References
  1. X. Chen, R. Li, B. Li, et al. Achieving ultra-high ductility and fracture toughness in molybdenum via Mo2TiC2 MXene addition. Mater. Sci. Eng. A, 2021, 818, 141422.
  2. P. Jehanno, M. Boning, H. Kestler, et al. Molybdenum alloys for high temperature applications in air, Powder Metal., 2008, 51, 99-102.
  3. G. Liu, G.J. Zhang, F. Jiang, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Mater., 2013, 12, 344-350.
  4. W.B. Guo, G.P. Li, D. Bair, et al. Parametric optimization of multi-pass electron beam melting for molybdenum alloy containing 47.5 wt% rhenium, Int. J. Refract. Met. H., 2023, 113, 106193.
  5. H. Yu, H.D. Zhang, L.J. Zhang, Regulation of performance of laser-welded socket joint of Mo-14Re ultra-high-temperature heat pipe by introducing Ti into both weld and heat affected zone, J. Mater. Rea. Technol., 2023, 22, 569-584.
  6. G. Leichtfried, J.H. Schneibel, M. Heilmaier, et al. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys, Metall. Mater. Trans. A, 2006, 10, 2955-2961.
  7. X. Yu, P. Hu, K.S. Wang, et al. Microstructure and texture evolution of pure molybdenum during hot deformation, Mater. Charact., 2020, 159, 110010.
  8. A. Chaudhuri, A. Sarkar, S. Suwas, et al. Investigation of stress-strain response, microstructure and texture of hot deformed pure molybdenum, Int. J. Refract. Met. H., 2018, 73, 168-182.
  9. Y. Xia, P. Hu, K.S. Wang, et al. Dynamic recrystallization behavior of a Mo-2.0%ZrO2 alloy during hot deformation, Int. J. Refract. Met. H., 2022, 109, 105983.
  10. H.R. Xing, P. Hu, Y.H. Zhou, et al. The microstructure and texture evolution of pure molybdenum sheets under various rolling reductions, Mater. Charact., 2020, 165, 110357.
  11. M.L. Lobanov, S.V. Danilov, V.I. Pastukhov, et al. The crystallographic relationship of molybdenum textures after hot rolling and recrystallization, Mater. Design, 2016, 109, 251-255.
  12. A.S. Schneider, B.G. Clark, C.P. Frick, et al. Effect of orientation and loading rate on compression behavior of small-scale Mo pillars, Mater. Sci. Engineer. A, 2009, 508, 241-246.
  13. Schneider, AS, Frick, CP, Arzt, E, et al. Influence of test temperature on the size effect in molybdenum small-scale compression pillars, Philos. Mag. Lett., 2013, 93, 331-338.
  14. J.Y. Kim, D.C. Jang, J.R. Greer, et al. Crystallographic orientation and size dependence of tension compression asymmetry in molybdenum nano-pillars, Inter. J. Plast., 2012, 28, 46-52.
  15. J.Y. Kim, J.R. Greer, Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale, Acta Mater., 2009, 57, 5245-5253.
  16. S. Xu, D.Y. Xie, DY, G.S. Liu, et al. Quantifying the resistance to dislocation glide in single phase FeCrAl alloy, Inter. J. Plast., 2020, 132, 102770.
  17. J.Y. Kim, D.C. Jang, J.R. Greer, et al. Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale, Acta Mater., 2010, 58, 2355-2363.
  18. X. Yu, Z. Li, P. Jain, et al. Effect of Si content on the uniaxial tensile behavior of Mo-Si solid solution alloys, Acta Mater., 2021, 207, 116654.
  19. Weinberger, CR, Boyce, BL, Battaile, CC, Slip planes in bcc transition metals, Inter. Mater. Rev., 2013, 58, 296-314.
  20. N. I. MEDVEDEVA, YU. N. GORNOSTYREV, A. J. FREEMAN. Solid solution softening in bcc Mo alloys: Effect of transition-metal additions on dislocation structure and mobility. Phys. Rev. B., 2005, 72(13): 134107.1-134107.9.
  21. J.H. Schneibel, E.J. Felderman, E.K. Ohriner, et al. Mechanical properties of ternary molybdenum-rhenium alloys at room temperature and 1700 K, Scripta Mater., 2008, 59, 131-134.