LITERATURE CITED
Alred, B.J., 2021. Exploring the Potential of the Biological Control Agent Hypena opulenta (Christoph)(Lepidoptera: Erebidae) at Controlling Invasive Swallow-Wort Vines in Michigan and Its Indirect Effects on Monarch Butterflies. Michigan State University.
Andersen, J.C., Elkinton, J.S., 2022. Predation and Climate Limit Establishment Success of the Kyushu Strain of the Biological Control Agent Aphalara itadori (Hemiptera: Aphalaridae) in the Northeastern United States. Environmental entomology.
Arnold, M.L., 1997. Natural hybridization and evolution. Oxford University Press on Demand.
Badenes‐Perez, F.R., Nault, B.A., Shelton, A.M., 2006. Dynamics of diamondback moth oviposition in the presence of a highly preferred non‐suitable host. Entomologia Experimentalis et Applicata 120,23-31.
Bean, D.W., Dalin, P., Dudley, T.L., 2012. Evolution of critical day length for diapause induction enables range expansion of Diorhabda carinulata , a biological control agent against tamarisk (Tamarix spp.). Evolutionary applications 5, 511-523.
Berenbaum, M., 1981. An oviposition “mistake” by. Papilio glaucus.
Bitume, E., Bean, D., Stahlke, A., Hufbauer, R., 2017. Hybridization affects life-history traits and host specificity in Diorhabdaspp. Biological control 111, 45-52.
Camargo, A.M., Kurose, D., Post, M.J., Lommen, S.T., 2022. A new population of the biocontrol agent Aphalara itadori performs best on the hybrid host Reynoutria x bohemica . Biological control 174, 105007.
Casagrande, R., Dacey, J., 2014. Monarch butterfly oviposition on swallow-worts (Vincetoxicum spp. ). Environmental entomology 36, 631-636.
Clements, D.R., Larsen, T., Grenz, J., 2016. Knotweed management strategies in North America with the advent of widespread hybrid Bohemian knotweed, regional differences, and the potential for biocontrol via the psyllid Aphalara itadori Shinji. Invasive Plant Science and Management 9, 60-70.
Cock, M.J., Murphy, S.T., Kairo, M.T., Thompson, E., Murphy, R.J., Francis, A.W., 2016. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61, 349-363.
Danilevskii, A.S., 1965. Photoperiodism and seasonal development of insects. Photoperiodism and seasonal development of insects.
Davis, S.L., Cipollini, D., 2014. Do mothers always know best? Oviposition mistakes and resulting larval failure of Pieris virginiensis on Alliaria petiolata , a novel, toxic host. Biological Invasions 16, 1941-1950.
Dingle, H., Blau, W.S., Brown, C.K., Hegmann, J.P., 1982. Population crosses and the genetic structure of milkweed bug life histories. Evolution and genetics of life histories, 209-229.
Dlugosch, K.M., Anderson, S.R., Braasch, J., Cang, F.A., Gillette, H.D., 2016. The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Invasion genetics: The baker and stebbins legacy, 232-251.
Edmands, S., 2007. Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Molecular ecology 16, 463-475.
Faldyn, M.J., Hunter, M.D., Elderd, B.D., 2018. Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies. Wiley Online Library.
Fung, C., González-Moreno, P., Pratt, C., Oliver, T.H., Bourchier, R.S., González-Suárez, M., 2020. Effect of humidity and temperature on the performance of three strains of Aphalara itadori , a biocontrol agent for Japanese knotweed. Biological control 146, 104269.
Grevstad, F., Shaw, R., Bourchier, R., Sanguankeo, P., Cortat, G., Reardon, R.C., 2013. Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori , candidates for biological control of invasive knotweeds in North America. Biological control 65, 53-62.
Grevstad, F.S., Andreas, J.E., Bourchier, R.S., Shaw, R., Winston, R.L., Randall, C.B., 2018. Biology and biological control of knotweeds. United States Department of Agriculture, Forest Health Assessment and Applied Sciences Team.
Grevstad, F.S., Wepprich, T., Barker, B., Coop, L.B., Shaw, R., Bourchier, R.S., 2022. Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects. Ecological Applications 32, e2557.
Hall, D.G., 2008. Biology, history and world status of Diaphorina citri. Proceedings of the International Workshop on Huanglongbing and Asian Citrus Psyllid. Citeseer, pp. 1-11.
Hard, J.J., Bradshaw, W.E., Holzapfel, C.M., 1993. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii . The American Naturalist 142, 457-473.
He, H.-M., Tang, J.-J., Huang, L.-L., Wu, S.-H., Peng, Y., Xue, F.-S., 2021. Inheritance of key life-history traits in crosses between northern and southern populations of the cabbage beetle Colaphellus bowringi (Coleoptera: Chrysomelidae). Bulletin of Entomological Research 111, 420-428.
Hodkinson, I., 1974. The biology of the Psylloidea (Homoptera): a review. Bulletin of Entomological Research 64, 325-338.
Hoffmann, J., Impson, F., Volchansky, C., 2002. Biological control of cactus weeds: implications of hybridization between control agent biotypes. Journal of Applied Ecology 39, 900-908.
Hoy, M.A., 1975. Hybridization of strains of the gypsy moth parasitoid,Apanteles melanoscelus , and its influence upon diapause. Annals of the Entomological Society of America 68, 261-264.
Hufbauer, R., Rutschmann, A., Serrate, B., Vermeil de Conchard, H., Facon, B., 2013. Role of propagule pressure in colonization success: disentangling the relative importance of demographic, genetic and habitat effects. Journal of Evolutionary Biology 26, 1691-1699.
Jones, I.M., Bourchier, R.S., Smith, S.M., 2021. Long-term captive-rearing affects oviposition behavior and nymphal survival of a weed biological control agent. Biological control 162, 104727.
Jones, I.M., Smith, S.M., Bourchier, R.S., 2020. Establishment of the biological control agent Aphalara itadori is limited by native predators and foliage age. Journal of Applied Entomology 144,710-718.
Leung, K., Ras, E., Ferguson, K.B., Ariëns, S., Babendreier, D., Bijma, P., Bourtzis, K., Brodeur, J., Bruins, M.A., Centurión, A., 2020. Next‐generation biological control: the need for integrating genetics and genomics. Biological Reviews 95, 1838-1854.
Lynch, M., 1991. The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45, 622-629.
Masaki, S., 1999. Seasonal adaptations of insects as revealed by latitudinal diapause clines. Entomological Science 2, 539-550.
Mathenge, C.W., Holford, P., Hoffmann, J., Zimmermann, H., Spooner-Hart, R., Beattie, G., 2010. Hybridization between Dactylopius tomentosus (Hemiptera: Dactylopiidae) biotypes and its effects on host specificity. Bulletin of Entomological Research 100, 331-338.
Moffat, C.E., Abram, P.K., Ensing, D.J., 22–An evolutionary ecology synthesis for biological control.
Mousseau, T.A., Dingle, H., 1991. Maternal effects in insect life histories. Annual review of entomology 36, 511-534.
Myint, Y., Nakahira, K., Takagi, M., Furuya, N., Shaw, R., 2012. Using life-history parameters and a degree-day model to predict climate suitability in England for the Japanese knotweed psyllid Aphalara itadori Shinji (Hemiptera: Psyllidae). Biological control 63,129-134.
Parepa, M., Fischer, M., Krebs, C., Bossdorf, O., 2014. Hybridization increases invasive knotweed success. Evolutionary applications 7, 413-420.
Ries, L., Fagan, W.F., 2003. Habitat edges as a potential ecological trap for an insect predator. Ecological entomology 28, 567-572.
Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science 317, 910-914.
Schierenbeck, K.A., Ellstrand, N.C., 2009. Hybridization and the evolution of invasiveness in plants and other organisms. Biological Invasions 11, 1093-1105.
Schlaepfer, M.A., Sherman, P.W., Blossey, B., Runge, M.C., 2005. Introduced species as evolutionary traps. Ecology letters 8,241-246.
Schwarzländer, M., Hinz, H.L., Winston, R., Day, M., 2018. Biological control of weeds: an analysis of introductions, rates of establishment and estimates of success, worldwide. BioControl 63, 319-331.
Sentis, A., Hemptinne, J.L., Magro, A., Outreman, Y., 2022. Biological control needs evolutionary perspectives of ecological interactions. Evolutionary applications 15, 1537-1554.
Shaw, R.H., Bryner, S., Tanner, R., 2009. The life history and host range of the Japanese knotweed psyllid, Aphalara itadori Shinji: potentially the first classical biological weed control agent for the European Union. Biological control 49, 105-113.
Stebbins, G.L., 1959. The role of hybridization in evolution. Proceedings of the American Philosophical Society 103, 231-251.
Szűcs, M., Clark, E., Schaffner, U., Littlefield, J., Hoover, C., Hufbauer, R., 2021. The effects of intraspecific hybridization on the host specificity of a weed biocontrol agent. Biological control 157, 104585.
Szűcs, M., Eigenbrode, S.D., Schwarzländer, M., Schaffner, U., 2012. Hybrid vigor in the biological control agent, Longitarsus jacobaeae . Evolutionary applications 5, 489-497.
Szűcs, M., Melbourne, B.A., Tuff, T., Weiss‐Lehman, C., Hufbauer, R.A., 2017. Genetic and demographic founder effects have long‐term fitness consequences for colonising populations. Ecology letters 20,436-444.
Szűcs, M., Salerno, P.E., Teller, B.J., Schaffner, U., Littlefield, J.L., Hufbauer, R.A., 2019. The effects of agent hybridization on the efficacy of biological control of tansy ragwort at high elevations. Evolutionary applications 12, 470-481.
Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal adaptations of insects. Oxford University Press on Demand.
Van Driesche, R., Winston, R.L., Duan, J.J., 2020. Classical insect biocontrol in North America, 1985 to 2018: a pest control strategy that is dying out? CABI Reviews.
Figure 1. Mean ± SE of eggs laid by 25 females originating from fourA. itadori populations (Hokkaido, Kyushu and their reciprocal hybrids: FemKYU and FemHOK) on three knotweed species (Japanese, Bohemian, and giant) over the course of 72 hours in a multiple-choice experiment. Letters above the bars indicate significant differences at (α< 0.05) across population treatments based on post-hoc pairwise comparisons using Tukey adjustment.
Figure 2. Development success (mean ± SE) of four populations (Hokkaido, Kyushu and their reciprocal hybrids: FemKYU and FemHOK) of A. itadori on three knotweed species (Japanese, Bohemian, and giant). Letters above the bars indicate significant differences (α< 0.05) across treatments based on post-hoc pairwise comparisons using Tukey adjustment.