LITERATURE CITED
Alred, B.J., 2021. Exploring the Potential of the Biological Control
Agent Hypena opulenta (Christoph)(Lepidoptera: Erebidae) at
Controlling Invasive Swallow-Wort Vines in Michigan and Its Indirect
Effects on Monarch Butterflies. Michigan State University.
Andersen, J.C., Elkinton, J.S., 2022. Predation and Climate Limit
Establishment Success of the Kyushu Strain of the Biological Control
Agent Aphalara itadori (Hemiptera: Aphalaridae) in the
Northeastern United States. Environmental entomology.
Arnold, M.L., 1997. Natural hybridization and evolution. Oxford
University Press on Demand.
Badenes‐Perez, F.R., Nault, B.A., Shelton, A.M., 2006. Dynamics of
diamondback moth oviposition in the presence of a highly preferred
non‐suitable host. Entomologia Experimentalis et Applicata 120,23-31.
Bean, D.W., Dalin, P., Dudley, T.L., 2012. Evolution of critical day
length for diapause induction enables range expansion of Diorhabda
carinulata , a biological control agent against tamarisk (Tamarix spp.).
Evolutionary applications 5, 511-523.
Berenbaum, M., 1981. An oviposition “mistake” by. Papilio glaucus.
Bitume, E., Bean, D., Stahlke, A., Hufbauer, R., 2017. Hybridization
affects life-history traits and host specificity in Diorhabdaspp. Biological control 111, 45-52.
Camargo, A.M., Kurose, D., Post, M.J., Lommen, S.T., 2022. A new
population of the biocontrol agent Aphalara itadori performs best
on the hybrid host Reynoutria x bohemica . Biological control
174, 105007.
Casagrande, R., Dacey, J., 2014. Monarch butterfly oviposition on
swallow-worts (Vincetoxicum spp. ). Environmental entomology
36, 631-636.
Clements, D.R., Larsen, T., Grenz, J., 2016. Knotweed management
strategies in North America with the advent of widespread hybrid
Bohemian knotweed, regional differences, and the potential for
biocontrol via the psyllid Aphalara itadori Shinji. Invasive
Plant Science and Management 9, 60-70.
Cock, M.J., Murphy, S.T., Kairo, M.T., Thompson, E., Murphy, R.J.,
Francis, A.W., 2016. Trends in the classical biological control of
insect pests by insects: an update of the BIOCAT database. BioControl
61, 349-363.
Danilevskii, A.S., 1965. Photoperiodism and seasonal development of
insects. Photoperiodism and seasonal development of insects.
Davis, S.L., Cipollini, D., 2014. Do mothers always know best?
Oviposition mistakes and resulting larval failure of Pieris
virginiensis on Alliaria petiolata , a novel, toxic host.
Biological Invasions 16, 1941-1950.
Dingle, H., Blau, W.S., Brown, C.K., Hegmann, J.P., 1982. Population
crosses and the genetic structure of milkweed bug life histories.
Evolution and genetics of life histories, 209-229.
Dlugosch, K.M., Anderson, S.R., Braasch, J., Cang, F.A., Gillette, H.D.,
2016. The devil is in the details: genetic variation in introduced
populations and its contributions to invasion. Invasion genetics: The
baker and stebbins legacy, 232-251.
Edmands, S., 2007. Between a rock and a hard place: evaluating the
relative risks of inbreeding and outbreeding for conservation and
management. Molecular ecology 16, 463-475.
Faldyn, M.J., Hunter, M.D., Elderd, B.D., 2018. Climate change and an
invasive, tropical milkweed: an ecological trap for monarch butterflies.
Wiley Online Library.
Fung, C., González-Moreno, P., Pratt, C., Oliver, T.H., Bourchier, R.S.,
González-Suárez, M., 2020. Effect of humidity and temperature on the
performance of three strains of Aphalara itadori , a biocontrol
agent for Japanese knotweed. Biological control 146, 104269.
Grevstad, F., Shaw, R., Bourchier, R., Sanguankeo, P., Cortat, G.,
Reardon, R.C., 2013. Efficacy and host specificity compared between two
populations of the psyllid Aphalara itadori , candidates for
biological control of invasive knotweeds in North America. Biological
control 65, 53-62.
Grevstad, F.S., Andreas, J.E., Bourchier, R.S., Shaw, R., Winston, R.L.,
Randall, C.B., 2018. Biology and biological control of knotweeds. United
States Department of Agriculture, Forest Health Assessment and Applied
Sciences Team.
Grevstad, F.S., Wepprich, T., Barker, B., Coop, L.B., Shaw, R.,
Bourchier, R.S., 2022. Combining photoperiod and thermal responses to
predict phenological mismatch for introduced insects. Ecological
Applications 32, e2557.
Hall, D.G., 2008. Biology, history and world status of Diaphorina citri.
Proceedings of the International Workshop on Huanglongbing and Asian
Citrus Psyllid. Citeseer, pp. 1-11.
Hard, J.J., Bradshaw, W.E., Holzapfel, C.M., 1993. The genetic basis of
photoperiodism and its evolutionary divergence among populations of the
pitcher-plant mosquito, Wyeomyia smithii . The American Naturalist
142, 457-473.
He, H.-M., Tang, J.-J., Huang, L.-L., Wu, S.-H., Peng, Y., Xue, F.-S.,
2021. Inheritance of key life-history traits in crosses between northern
and southern populations of the cabbage beetle Colaphellus
bowringi (Coleoptera: Chrysomelidae). Bulletin of Entomological
Research 111, 420-428.
Hodkinson, I., 1974. The biology of the Psylloidea (Homoptera): a
review. Bulletin of Entomological Research 64, 325-338.
Hoffmann, J., Impson, F., Volchansky, C., 2002. Biological control of
cactus weeds: implications of hybridization between control agent
biotypes. Journal of Applied Ecology 39, 900-908.
Hoy, M.A., 1975. Hybridization of strains of the gypsy moth parasitoid,Apanteles melanoscelus , and its influence upon diapause. Annals
of the Entomological Society of America 68, 261-264.
Hufbauer, R., Rutschmann, A., Serrate, B., Vermeil de Conchard, H.,
Facon, B., 2013. Role of propagule pressure in colonization success:
disentangling the relative importance of demographic, genetic and
habitat effects. Journal of Evolutionary Biology 26, 1691-1699.
Jones, I.M., Bourchier, R.S., Smith, S.M., 2021. Long-term
captive-rearing affects oviposition behavior and nymphal survival of a
weed biological control agent. Biological control 162, 104727.
Jones, I.M., Smith, S.M., Bourchier, R.S., 2020. Establishment of the
biological control agent Aphalara itadori is limited by native
predators and foliage age. Journal of Applied Entomology 144,710-718.
Leung, K., Ras, E., Ferguson, K.B., Ariëns, S., Babendreier, D., Bijma,
P., Bourtzis, K., Brodeur, J., Bruins, M.A., Centurión, A., 2020.
Next‐generation biological control: the need for integrating genetics
and genomics. Biological Reviews 95, 1838-1854.
Lynch, M., 1991. The genetic interpretation of inbreeding depression and
outbreeding depression. Evolution 45, 622-629.
Masaki, S., 1999. Seasonal adaptations of insects as revealed by
latitudinal diapause clines. Entomological Science 2, 539-550.
Mathenge, C.W., Holford, P., Hoffmann, J., Zimmermann, H., Spooner-Hart,
R., Beattie, G., 2010. Hybridization between Dactylopius
tomentosus (Hemiptera: Dactylopiidae) biotypes and its effects on host
specificity. Bulletin of Entomological Research 100, 331-338.
Moffat, C.E., Abram, P.K., Ensing, D.J., 22–An evolutionary ecology
synthesis for biological control.
Mousseau, T.A., Dingle, H., 1991. Maternal effects in insect life
histories. Annual review of entomology 36, 511-534.
Myint, Y., Nakahira, K., Takagi, M., Furuya, N., Shaw, R., 2012. Using
life-history parameters and a degree-day model to predict climate
suitability in England for the Japanese knotweed psyllid Aphalara
itadori Shinji (Hemiptera: Psyllidae). Biological control 63,129-134.
Parepa, M., Fischer, M., Krebs, C., Bossdorf, O., 2014. Hybridization
increases invasive knotweed success. Evolutionary applications
7, 413-420.
Ries, L., Fagan, W.F., 2003. Habitat edges as a potential ecological
trap for an insect predator. Ecological entomology 28, 567-572.
Rieseberg, L.H., Willis, J.H., 2007. Plant speciation. Science
317, 910-914.
Schierenbeck, K.A., Ellstrand, N.C., 2009. Hybridization and the
evolution of invasiveness in plants and other organisms. Biological
Invasions 11, 1093-1105.
Schlaepfer, M.A., Sherman, P.W., Blossey, B., Runge, M.C., 2005.
Introduced species as evolutionary traps. Ecology letters 8,241-246.
Schwarzländer, M., Hinz, H.L., Winston, R., Day, M., 2018. Biological
control of weeds: an analysis of introductions, rates of establishment
and estimates of success, worldwide. BioControl 63, 319-331.
Sentis, A., Hemptinne, J.L., Magro, A., Outreman, Y., 2022. Biological
control needs evolutionary perspectives of ecological interactions.
Evolutionary applications 15, 1537-1554.
Shaw, R.H., Bryner, S., Tanner, R., 2009. The life history and host
range of the Japanese knotweed psyllid, Aphalara itadori Shinji:
potentially the first classical biological weed control agent for the
European Union. Biological control 49, 105-113.
Stebbins, G.L., 1959. The role of hybridization in evolution.
Proceedings of the American Philosophical Society 103, 231-251.
Szűcs, M., Clark, E., Schaffner, U., Littlefield, J., Hoover, C.,
Hufbauer, R., 2021. The effects of intraspecific hybridization on the
host specificity of a weed biocontrol agent. Biological control
157, 104585.
Szűcs, M., Eigenbrode, S.D., Schwarzländer, M., Schaffner, U., 2012.
Hybrid vigor in the biological control agent, Longitarsus
jacobaeae . Evolutionary applications 5, 489-497.
Szűcs, M., Melbourne, B.A., Tuff, T., Weiss‐Lehman, C., Hufbauer, R.A.,
2017. Genetic and demographic founder effects have long‐term fitness
consequences for colonising populations. Ecology letters 20,436-444.
Szűcs, M., Salerno, P.E., Teller, B.J., Schaffner, U., Littlefield,
J.L., Hufbauer, R.A., 2019. The effects of agent hybridization on the
efficacy of biological control of tansy ragwort at high elevations.
Evolutionary applications 12, 470-481.
Tauber, M.J., Tauber, C.A., Masaki, S., 1986. Seasonal adaptations of
insects. Oxford University Press on Demand.
Van Driesche, R., Winston, R.L., Duan, J.J., 2020. Classical insect
biocontrol in North America, 1985 to 2018: a pest control strategy that
is dying out? CABI Reviews.
Figure 1. Mean ± SE of eggs laid by 25 females originating from fourA. itadori populations (Hokkaido, Kyushu and their reciprocal
hybrids: FemKYU and FemHOK) on three knotweed species (Japanese,
Bohemian, and giant) over the course of 72 hours in a multiple-choice
experiment. Letters above the bars indicate significant differences at
(α< 0.05) across population treatments based on post-hoc
pairwise comparisons using Tukey adjustment.
Figure 2. Development success (mean ± SE) of four populations (Hokkaido,
Kyushu and their reciprocal hybrids: FemKYU and FemHOK) of A.
itadori on three knotweed species (Japanese, Bohemian, and giant).
Letters above the bars indicate significant differences (α<
0.05) across treatments based on post-hoc pairwise comparisons using
Tukey adjustment.