References
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., & Anderson, R. P. (2015). spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models.Ecography, 38(5), 541–545. https://doi.org/10.1111/ecog.01132 Altringham, J. D., & McOwat, T. (2011). Bats: From evolution to conservation (2. ed). Oxford Univ. Press. Appel, G., López-Baucells, A., Magnusson, W. E., & Bobrowiec, P. E. D. (2019). Temperature, rainfall, and moonlight intensity effects on activity of tropical insectivorous bats. Journal of Mammalogy, 100(6), 1889–1900. https://doi.org/10.1093/jmammal/gyz140 Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O’Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments.Science Advances, 5(1), eaat4858. https://doi.org/10.1126/sciadv.aat4858 Araújo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313(5792), 1396–1397. https://doi.org/10.1126/science.1131758 Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33(10), 1712–1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x Araújo, M. B., & Luoto, M. (2007). The importance of biotic interactions for modelling species distributions under climate change.Global Ecology and Biogeography, 16(6), 743–753. https://doi.org/10.1111/j.1466-8238.2007.00359.x Araujo, M., & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution, 22(1), 42–47. https://doi.org/10.1016/j.tree.2006.09.010 Bandara, A. P. M. J., Madurapperuma, B. D., Edirisinghe, G., Gabadage, D., Botejue, M., & Surasinghe, T. D. (2022). Bioclimatic envelopes for two bat species from a tropical island: Insights on current and future distribution from ecological niche modeling. Diversity,14(7), 506. https://doi.org/10.3390/d14070506 Barbet-Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x Bates, P. J. J., & Harrison, D. L. (1997). Bats of the Indian subcontinent. Harrison Zoological Museum. Bellard, C., Thuiller, W., Leroy, B., Genovesi, P., Bakkenes, M., & Courchamp, F. (2013). Will climate change promote future invasions?Global Change Biology, 19(12), 3740–3748. https://doi.org/10.1111/gcb.12344 Breiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution,9(4), 802–808. https://doi.org/10.1111/2041-210X.12957 Brook, B. W. (2009). Global warming tugs at trophic interactions.Journal of Animal Ecology, 78(1), 1–3. https://doi.org/10.1111/j.1365-2656.2008.01490.x Champion, H. G., & Seth, S. K. (1968). The revised survey of the forest types of India. Manager of Publications. Conenna, I., López-Baucells, A., Rocha, R., Ripperger, S., & Cabeza, M. (2019). Movement seasonality in a desert-dwelling bat revealed by miniature GPS loggers. Movement Ecology, 7(1), 27. https://doi.org/10.1186/s40462-019-0170-8 Corro, E. J., Villalobos, F., Lira-Noriega, A., Guevara, R., Guimarães, P. R., & Dáttilo, W. (2021). Annual precipitation predicts the phylogenetic signal in bat–fruit interaction networks across the Neotropics. Biology Letters, 17(12), 20210478. https://doi.org/10.1098/rsbl.2021.0478 Costa, W. F., Ribeiro, M., Saraiva, A. M., Imperatriz-Fonseca, V. L., & Giannini, T. C. (2018). Bat diversity in Carajás National Forest (Eastern amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 218, 200–210. https://doi.org/10.1016/j.biocon.2017.12.034 De Marco, P., & Nóbrega, C. C. (2018). Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLOS ONE, 13(9), e0202403. https://doi.org/10.1371/journal.pone.0202403 Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, T., McClean, C., Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D., & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x Drake, J. M. (2014). Ensemble algorithms for ecological niche modeling from presence-background and presence-only data. Ecosphere,5(6), art76. https://doi.org/10.1890/ES13-00202.1 Elith, J. (2019). Machine learning, random forests, and boosted regression trees. In A. Brennan, A. N. Tri, & B. G. Marcot (Eds.),Quantitative analyses in wildlife science. Johns Hopkins University. Elith, J., H. Graham, C., P. Anderson, R., Dudík, M., Ferrier, S., Guisan, A., J. Hijmans, R., Huettmann, F., R. Leathwick, J., Lehmann, A., Li, J., G. Lohmann, L., A. Loiselle, B., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC. M. Overton, J., Townsend Peterson, A., … E. Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography,29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists: Statistical explanation of MaxEnt. Diversity and Distributions,17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x Engler, R., Guisan, A., & Rechsteiner, L. (2004). An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology,41(2), 263–274. https://doi.org/10.1111/j.0021-8901.2004.00881.x Feng, X., Park, D. S., Liang, Y., Pandey, R., & Papeş, M. (2019). Collinearity in ecological niche modeling: Confusions and challenges.Ecology and Evolution, 9(18), 10365–10376. https://doi.org/10.1002/ece3.5555 Feng, X., Park, D. S., Walker, C., Peterson, A. T., Merow, C., & Papeş, M. (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution, 3(10), 1382–1395. https://doi.org/10.1038/s41559-019-0972-5 Festa, F., Ancillotto, L., Santini, L., Pacifici, M., Rocha, R., Toshkova, N., Amorim, F., Benítez‐López, A., Domer, A., Hamidović, D., Kramer‐Schadt, S., Mathews, F., Radchuk, V., Rebelo, H., Ruczynski, I., Solem, E., Tsoar, A., Russo, D., & Razgour, O. (2022). Bat responses to climate change: A systematic review. Biological Reviews, brv.12893. https://doi.org/10.1111/brv.12893 Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 Fordham, D. A., Resit Akçakaya, H., Araújo, M. B., Elith, J., Keith, D. A., Pearson, R., Auld, T. D., Mellin, C., Morgan, J. W., Regan, T. J., Tozer, M., Watts, M. J., White, M., Wintle, B. A., Yates, C., & Brook, B. W. (2012). Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology, 18(4), 1357–1371. https://doi.org/10.1111/j.1365-2486.2011.02614.x Frembgen, J. W. (2006). Embodying evil and bad luck: Stray notes on the folklore of bats in Southwest Asia. Asian Folklore Studies,65, 241–247. Frick, W. F., Kingston, T., & Flanders, J. (2020). A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences, 1469(1), 5–25. https://doi.org/10.1111/nyas.14045 Fumagalli, M. R., Zapperi, S., & La Porta C. A. M. (2021). Role of body temperature variations in bat immune response to viral infections.Journal of the Royal Society Interface, 18(180). https://doi.org/10.1098/rsif.2021.0211 Siniciato Terra Garbino, G., Antônio, D. C., & Da Cunha Tavares, V. (2023). Seasonality rather than average temperature explains body size variation in a Neotropical fruit‐eating bat. Austral Ecology, 48(3), 552–562. https://doi.org/10.1111/aec.13282 Good, P. (2019). MOHC HadGEM3-GC31-ll model output prepared for CMIP6 ScenarioMIP SSP245 [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10851 Good, P. (2020). MOHC HadGEM3-GC31-ll model output prepared for CMIP6 ScenarioMIP SSP585 [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.10901 Gorman, K. M., Barr, E. L., Ries, L., Nocera, T., & Ford, W. M. (2021). Bat activity patterns relative to temporal and weather effects in a temperate coastal environment. Global Ecology and Conservation,30, e01769. https://doi.org/10.1016/j.gecco.2021.e01769 Grindal, S. D., Collard, T. S., Brigham, R. M., & Barclay, R. M. R. (1992). The influence of precipitation on reproduction by Myotisbats in British Columbia. The American Midland Naturalist, 128(2), 339–344. https://doi.org/10.2307/2426468 Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters,8(9), 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x Guo, C., Lek, S., Ye, S., Li, W., Liu, J., & Li, Z. (2015). Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques. Ecological Modelling, 306, 67–75. https://doi.org/10.1016/j.ecolmodel.2014.08.002 Hao, T., Elith, J., Lahoz‐Monfort, J. J., & Guillera‐Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models.Ecography, 43(4), 549–558. https://doi.org/10.1111/ecog.04890 Hayes, M. A., & Piaggio, A. J. (2018). Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector.PLOS ONE, 13(2), e0192887. https://doi.org/10.1371/journal.pone.0192887 Heikkinen, R. K., Luoto, M., Araújo, M. B., Virkkala, R., Thuiller, W., & Sykes, M. T. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment, 30(6), 751–777. https://doi.org/10.1177/0309133306071957 Hijmans, R. J. (2022). geosphere: Spherical trigonometry. R package, version 1.5-18. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. https://doi.org/10.1002/joc.1276 Hoffmann, A., & Sgrò, C. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485. https://doi.org/10.1038/nature09670 Hughes, A. C., Satasook, C., Bates, P. J. J., Bumrungsri, S., & Jones, G. (2012). The projected effects of climatic and vegetation changes on the distribution and diversity of Southeast Asian bats. Global Change Biology, 18(6), 1854–1865. https://doi.org/10.1111/j.1365-2486.2012.02641.x Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science,301(5635), 929–933. https://doi.org/10.1126/science.1085046 Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M., & Gutiérrez, J. M. (2015). A framework for species distribution modelling with improved pseudo-absence generation. Ecological Modelling,312, 166–174. https://doi.org/10.1016/j.ecolmodel.2015.05.018 Jetz, W., Wilcove, D. S., & Dobson, A. P. (2007). Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 Jones, G., Jacobs, D., Kunz, T., Willig, M., & Racey, P. (2009). Carpe noctem: The importance of bats as bioindicators. Endangered Species Research, 8, 93–115. https://doi.org/10.3354/esr00182 Kalka, M. B., Smith, A. R., & Kalko, E. K. V. (2008). Bats limit arthropods and herbivory in a tropical forest. Science,320(5872), 71–71. https://doi.org/10.1126/science.1153352 Kohyt, J., Pierzchała, E., Pereswiet-Soltan, A., & Piksa, K. (2021). Seasonal activity of urban bats populations in temperate climate zone—A case study from southern Poland. Animals, 11(5), 1474. https://doi.org/10.3390/ani11051474 Korine, C., Adams, R., Russo, D., Fisher-Phelps, M., & Jacobs, D. (2016). Bats and water: Anthropogenic alterations threaten global bat populations. In C. C. Voigt & T. Kingston (Eds.), Bats in the Anthropocene: Conservation of Bats in a Changing World (pp. 215–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-25220-9_8 Kriegler, E., Bauer, N., Popp, A., Humpenöder, F., Leimbach, M., Strefler, J., Baumstark, L., Bodirsky, B. L., Hilaire, J., Klein, D., Mouratiadou, I., Weindl, I., Bertram, C., Dietrich, J.-P., Luderer, G., Pehl, M., Pietzcker, R., Piontek, F., Lotze-Campen, H., … Edenhofer, O. (2017). Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change, 42, 297–315. https://doi.org/10.1016/j.gloenvcha.2016.05.015 Liévano‐Latorre, L. F., Varassin, I. G., & Zanata, T. B. (2023). Evolutionary history and precipitation seasonality shape niche overlap in Neotropical bat–plant pollination networks. Biotropica, 55(1), 246–255. https://doi.org/10.1111/btp.13181 Lütolf, M., Kienast, F., & Guisan, A. (2006). The ghost of past species occurrence: Improving species distribution models for presence-only data. Journal of Applied Ecology, 43(4), 802–815. https://doi.org/10.1111/j.1365-2664.2006.01191.x Malcolm, J. R., Liu, C., Neilson, R. P., Hansen, L., & Hannah, L. (2006). Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology, 20(2), 538–548. https://doi.org/10.1111/j.1523-1739.2006.00364.x Meller, L., Cabeza, M., Pironon, S., Barbet-Massin, M., Maiorano, L., Georges, D., & Thuiller, W. (2014). Ensemble distribution models in conservation prioritization: From consensus predictions to consensus reserve networks. Diversity and Distributions, 20(3), 309–321. https://doi.org/10.1111/ddi.12162 Midgley, G. F., Hughes, G. O., Thuiller, W., & Rebelo, A. G. (2006). Migration rate limitations on climate change-induced range shifts in Cape Proteaceae. Diversity & Distributions, 12(5), 555–562. https://doi.org/10.1111/j.1366-9516.2006.00273.x Morales, N. S., Fernández, I. C., Baca-González, V. (2017). MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 5: e3093. https://doi.org/10.7717/peerj.3093 Muñoz, J., & Felicísimo, Á. M. (2004). Comparison of statistical methods commonly used in predictive modelling. Journal of Vegetation Science, 15(2), 285–292. https://doi.org/10.1111/j.1654-1103.2004.tb02263.x Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities.Nature, 403(6772), 853–858. https://doi.org/10.1038/35002501 Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K., & Toxopeus, A. G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography, 37(2), 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios.Proceedings of the Royal Society B: Biological Sciences, 285(1881), 20180792. https://doi.org/10.1098/rspb.2018.0792 Oliver, J. E. (Ed.). (2005). Encyclopedia of world climatology. Springer. Olson, D. M., & Dinerstein, E. (1998). The Global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), 502–515. https://doi.org/10.1046/j.1523-1739.1998.012003502.x Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth.BioScience, 51(11), 933. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 O’Shea, T.J.; Cryan, P.M.; Hayman, D.T.; Plowright, R.K.; Streicker, D.G. (2016). Multiple mortality events in bats: A global review.Mammal Review, 46, 175–190. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature,421(6918), 37–42. https://doi.org/10.1038/nature01286 Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?: Evaluating bioclimate envelope models.Global Ecology and Biogeography, 12(5), 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2006). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar.Journal of Biogeography, 34(1), 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007 Peters, G.P., Andrew, R.M., Boden, T., Canadell, J.G., Ciais, P., Le Quéré, C., Marland, G., Raupach, M.R., & Wilson, C. (2013). The challenge to keep global warming below 2 C. Nature Climate Change3(1), 4–6. Peterson A. T., Soberón J., Pearson R. G., Anderson R. P., Martinez-Meyer E., Nakamura M., Araújo M. B. (2011). Ecological niches and geographic distributions. Princeton University Press. Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: An open-source release of Maxent.Ecography, 40(7), 887–893. https://doi.org/10.1111/ecog.03049 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3, 349–361. Quintero, I., & Wiens, J. J. (2013). Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16(8), 1095–1103. https://doi.org/10.1111/ele.12144 R Core Team. (2022). R: A language and environment for statistical computing (4.2.2). R Foundation for Statistical Computing. Raman, S., Shameer, T. T., Pooja, U., & Hughes, A. C. (2023). Identifying priority areas for bat conservation in the Western Ghats mountain range, peninsular India. Journal of Mammalogy, 104(1), 49–61. https://doi.org/10.1093/jmammal/gyac060 Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., & Rieseberg, L. H. (2018). Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69(1), 789–815. https://doi.org/10.1146/annurev-arplant-042817-040256 Rebelo, H., Tarroso, P., & Jones, G. (2010). Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology, 16(2), 561–576. https://doi.org/10.1111/j.1365-2486.2009.02021.x Ruedi, M., Walter, S., Fischer, M. C., Scaravelli, D., Excoffier, L., & Heckel, G. (2008). Italy as a major Ice Age refuge area for the batMyotis myotis (Chiroptera: Vespertilionidae) in Europe.Molecular Ecology, 17(7), 1801–1814. https://doi.org/10.1111/j.1365-294X.2008.03702.x Salinas-Ramos, V.B., Tomassini, A., Ferrari, F., Boga, R., & Russo, D. (2023). Admittance to wildlife rehabilitation centres points to adverse effects of climate change on insectivorous bats. Biology, 12(4), 543. https://doi.org/10.3390/biology12040543 Schmittner, A., & Galbraith, E. D. (2008). Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature,456(7220), 373–376. https://doi.org/10.1038/nature07531 Sherwin, H. A., Montgomery, W. I., & Lundy, M. G. (2013). The impact and implications of climate change for bats: Bats and climate change.Mammal Review, 43(3), 171–182. https://doi.org/10.1111/j.1365-2907.2012.00214.x Simões, M. V. P., & Peterson, A. T. (2018). Importance of biotic predictors in estimation of potential invasive areas: the example of the tortoise beetle Eurypedus nigrosignatus, in Hispaniola.PeerJ, 6, e6052. https://doi.org/10.7717/peerj.6052 Sippel, S., Zscheischler, J., Heimann, M., Otto, F. E. L., Peters, J., & Mahecha, M. D. (2015). Quantifying changes in climate variability and extremes: Pitfalls and their overcoming. Geophysical Research Letters, 42(22), 9990–9998. https://doi.org/10.1002/2015GL066307 Soberón, J., & Arroyo-Peña, B. (2017). Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson.PLOS ONE, 12(4), e0175138. https://doi.org/10.1371/journal.pone.0175138 Srinivasulu, A., Srinivasulu, B., & Srinivasulu, C. (2021). Ecological niche modelling for the conservation of endemic threatened squamates (lizards and snakes) in the Western Ghats. Global Ecology and Conservation, 28, e01700. https://doi.org/10.1016/j.gecco.2021.e01700 Srinivasulu, A., & Srinivasulu, C. (2016). All that glitters is not gold: A projected distribution of the endemic Indian Golden GeckoCalodactylodes aureus (Reptilia: Squamata: Gekkonidae) indicates a major range shrinkage due to future climate change. Journal of Threatened Taxa, 8(6), 8883–8892. https://doi.org/10.11609/jott.2723.8.6.8883-8892 Srinivasulu, C. (2019). South Asian Mammals: An updated checklist and their scientific names. CRC Press, Taylor & Francis Group. Srinivasulu, C., Srinivasulu, A., & Srinivasulu, B. (2021). JoTT Checklists: Checklist of the bats of South Asia (v1.5). Journal of Threatened Taxa. https://threatenedtaxa.org/index.php/JoTT/checklists/bats/southasia Srinivasulu, C., Srinivasulu, A., & Srinivasulu, B. (2023). JoTT Checklists: Checklist of the bats of South Asia (v1.7). Journal of Threatened Taxa. https://threatenedtaxa.org/index.php/JoTT/checklists/bats/southasia Srinivasulu, C., & Srinivasulu, B. (2012). South Asian Mammals. Springer New York. https://doi.org/10.1007/978-1-4614-3449-8 Stapelfeldt, B., Scheuerlein, A., Tress, C., Koch, R., Tress, J., & Kerth, G. (2022). Precipitation during two weeks in spring influences reproductive success of first-year females in the long-lived Natterer’s bat. Royal Society Open Science, 9(2), 211881. https://doi.org/10.1098/rsos.211881 Stones, R. C., & Wiebers, J. E. (1965). A review of temperature regulation in bats (Chiroptera). The American Midland Naturalist, 74(1), 155–167. https://doi.org/10.2307/2423129 Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., … Winter, B. (2019). The canadian earth system model version 5(CanESM5.0.3). Geoscientific Model Development, 12(11), 4823–4873. https://doi.org/10.5194/gmd-12-4823-2019 Thapa, S., Baral, S., Hu, Y., Huang, Z., Yue, Y., Dhakal, M., Jnawali, S. R., Chettri, N., Racey, P. A., Yu, W., & Wu, Y. (2021). Will climate change impact distribution of bats in Nepal Himalayas? A case study of five species. Global Ecology and Conservation, 26, e01483. https://doi.org/10.1016/j.gecco.2021.e01483 Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change.Nature, 427(6970), 145–148. https://doi.org/10.1038/nature02121 Thuiller, W., Georges, D., Gueguen, M., Engler, R., Breiner, F., Lafourcade, B., & Patin, R. (2022). biomod2: Ensemble platform for species distribution modelling. R package, version 4.1-2. https://CRAN.R-project.org/package=biomod2 Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD - a platform for ensemble forecasting of species distributions.Ecography, 32(3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x Urban, M. C. (2015). Accelerating extinction risk from climate change.Science, 348(6234), 571–573. https://doi.org/10.1126/science.aaa4984 Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2022). Predictive performance of presence‐only species distribution models: A benchmark study with reproducible code. Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486 van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J., Raes, N. (2016). Minimum required number of specimen records to develop accurate species distribution models. Ecography, 39(6): 542–552. Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., & Seneviratne, S. I. (2019). Concurrent 2018 hot extremes across northern hemisphere due to human‐induced climate change. Earth’s Future, 7(7), 692–703. https://doi.org/10.1029/2019EF001189 Walther, G.-R., Berger, S., & Sykes, M. T. (2005). An ecological ‘footprint’ of climate change. Proceedings of the Royal Society B: Biological Sciences, 272(1571), 1427–1432. https://doi.org/10.1098/rspb.2005.3119 Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x Weinberg, M., Mazar, O., Rachum, A., Chen, X., Goutink, S., Lifshitz, N., Winter-Livneh, R., Czirják, G. Á., & Yovel, Y. (2022). Seasonal challenges of tropical bats in temperate zones. Scientific Reports, 12(1), 16869. https://doi.org/10.1038/s41598-022-21076-9 Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A., & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences, 106, 19729–19736. https://doi.org/10.1073/pnas.0901639106 Williams-Guillén, K., Perfecto, I., & Vandermeer, J. (2008). Bats limit insects in a neotropical agroforestry system. Science,320(5872), 70–70. https://doi.org/10.1126/science.1152944 Wolkovich, E. M., Cook, B. I., McLauchlan, K. K., & Davies, T. J. (2014). Temporal ecology in the Anthropocene. Ecology Letters,17(11), 1365–1379. https://doi.org/10.1111/ele.12353 World Bank Group. (2022). The World Bank Annual Report 2022[Annual Report]. World Bank. https://doi.org/10.1596/AR2022EN