
SUBMITTED TO IEEE TRANS. SMART GRID 1

Optimal V2X operation of EV fleets with
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Abstract—The increasing number of electric vehicles expected
on the road in the coming years poses new threats to the reliability
of the power system. However, it can also play a key role as
a source of demand-side flexibility to support the system in
managing uncertainty resulting from the integration of renewable
and distributed energy resources. In this paper, a novel opera-
tional tool for vehicle-to-everything operation of electric vehicle
fleets with photovoltaics-battery charging station for demand-
side flexibility provision is proposed. The tool provides electric
vehicle aggregators with a risk-aware flexibility quantification,
robust market bids and real-time control decisions. The approach
was tested on real demonstrators in Switzerland, highlighting the
cost-benefits of demand-side flexibility provision, which resulted
in a net revenue for aggregators of CHF 3’142 over a month.
These revenues, generated from providing flexibility as a service
in the form of availability, significantly exceeded the energy costs
of the charging station.

Index Terms—Electric Vehicles, Vehicle-to-Everything,
Demand-side Flexibility, Uncertainty, Model Predictive Control.

I. INTRODUCTION

THE current regulatory policies aimed at promoting the
transition from fossil fuel to low emission transporta-

tion have incentivized significant technological advancements,
leading to reduced electric vehicle (EV) cost, increased EV
range and denser charging infrastructure. Consequently, EVs
are becoming more popular, with the global EV fleet projected
to reach 145 million units by 2030 [1]. On the one hand, the
added energy demand from the growing EV supply equipment
required for charging poses new threats to the reliability of
the power system [2]. On the other hand, the increasing
number of EVs on the road can play a key role as a source
of flexibility for a more reliable system operation if their
charging scheduling is properly optimised. The additional
storage capacity offered by EVs can support the system to deal
with the operational uncertainty resulting from the integration
of renewable and distributed energy resources. This would
allow for an improved utilization of the existing grid assets
and a consequent reduction of the investment costs to reinforce
the network equipment [3]. However, for flexibility provision
in new emerging demand-response (DR) markets, there are
participation requirements on minimum bid sizes that could
be challenging to meet for EV fleets [4].
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The onsite coupling between photovoltaics (PVs), battery
energy storage systems (BESS) and EV fleets with vehicle-
to-grid (V2G) technology has shown extremely promising
performance in terms of demand-side flexibility provision [5],
[6]. In a vehicle-to-everything (V2X) operation, EV fleets can
be used for site self-consumption maximization by storing
electricity surplus produced by PVs and releasing it during
peak hours [7], for load peak shifting in grid congestion
occurrences or for voltage and frequency regulation by con-
suming or injecting power when the grid constraints are
violated [8]. By aggregating the EV fleet and BESS capacity,
the requirement of minimum bid size can be easily met,
enabling the participation of EVs in DR markets, and hence
the generation of new revenue streams for aggregators [9].
To avoid overbidding in such markets, aggregators need new
operational tools: i) to quantify the available flexible energy
in advance for accurate flexibility market bidding and, ii) to
operate the charging station cost-efficiently while reserving
flexible energy in case of accepted bids.

Several approaches have been proposed for demand-side
flexibility quantification, most of them distinguishable into
direct and indirect quantification [10], [11]. Direct approaches
aim to quantify the flexibility directly at the level of individual
technologies in a bottom-up manner. Conversely, indirect
approaches assume a specific market and control strategy
and evaluate the impact of energy flexibility according to
standardized metrics [12], e.g. operational cost savings, peak
power, or carbon emission reductions. In particular, model
predictive control (MPC) has been widely used to indirectly
quantify the flexibility [13], [14], and most studies have
observed that the uncertainty coming from weather forecasts
or user behaviours can play a key role in terms of comfort
and grid constraint violations [15], [16]. To overcome the
challenge of considering uncertainty when quantifying energy
flexibility, sampling-based approaches or stochastic MPC-
based schemes have been investigated extensively [17], [18].
Similarly, due to the uncertain nature of market conditions,
stochastic approaches to the aggregator’s optimal bidding
problem seem necessary. In [19], a two-stage stochastic linear
programming was used to evaluate the optimal bidding strat-
egy model for an EV aggregator participating in the day-ahead
energy and regulation markets. Conversely, Monte Carlo (MC)
simulation was used to evaluate optimal bidding in German
secondary reserve market in [20]. When operating EV fleets
with PV-battery charging station for flexibility provision, the
uncertainty stems from onsite generation and load forecasts,
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and EV user behaviour, i.e. EV arrival and departure times
at the station and the required energy demand [21]. Such
uncertainties need to be considered both when quantifying the
flexibility in advance for market bids and when operating the
station in real-time.

A. Proposed approach
This paper proposes a novel operational tool for EV ag-

gregators with PV-battery charging station aiming at reducing
their energy costs and generating new revenues from the provi-
sion of demand-side flexibility. The flowchart of the proposed
approach is shown in Fig. 1. The first step is the time-ahead
prediction of the available flexibility based on forecasts of the
charging station generation and load, as well as EV arrival and
departure times and energy demand [22]. Subsequently, such
forecasts are fed as input to a multi-site optimizer that provides
15-hour ahead optimal charging/ discharging schedules for an
onsite BESS and an EV fleet moving between different sites
during the day, thus being able to provide flexibility services at
different locations. An example of the EV daily trip is shown
in Fig 2. The EV fleet moves between the charging station and
another site for daily services, which is also equipped with
charge points (CPs). The available flexible energy capacity
resulting from the optimization can then be bid in intraday DR
markets. Finally, in real-time operation, a controller adjusts the
BESS and EV schedules based on real-time measurements and
acceptance of the market bids.

The contribution of this paper is twofold:
• A chance-constrained intraday optimization of the BESS

and EV fleet charging scheduling for indirect flexibility
quantification under uncertainty and robust flexibility
bidding in DR markets;

• A flexibility-aware MPC-based real-time controller to
account for operational uncertainty while reserving the
flexible energy to provide in case of accepted bids.

A case study on the NEST and move demonstrators at
Empa, in Switzerland, was used to investigate the aggre-
gator’s cost-benefits of adopting the proposed tool in real-
time operations [23]. The test system representing the PV-
battery charging station included 168 kWh battery and 110
kWp PV systems, and 4 CPs. A fleet of 4 EVs with V2G
technology moving between the charging station and the
service site was sampled from real charging data provided by
TotalEnergies [22]. The flexibility market framework shown in
Fig. 3 was assumed [24], [25]. In such a framework, transmis-
sion and distribution operators can procure flexibility in two
respective and competitive DR markets, i.e. a local market for
congestion management and a national market for frequency
response services. The flexibility providers participate in the
most profitable market, i.e. higher availability (or reservation)
prices per MWh of provided energy flexibility.

The rest of the paper is structured as follows. Sections II
and III describe the methodologies for the indirect flexibility
quantification and the implementation of the MPC-based real-
time controller. Subsequently, section IV presents the case
study with the main assumptions related to the test system and
the market framework, the main results, and a few limitations
of the approach. Section V finally draws the conclusions.
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Fig. 1. The proposed operational tool for demand-side flexibility provision.
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Fig. 2. An example of daily EV trip.

II. FLEXIBILITY QUANTIFICATION

This section first describes the deterministic intraday charg-
ing schedule optimization with the operating constraints re-
lated to all the assets available at the charging station and
the EV fleet moving between the station and the service site.
Subsequently, the chance-constrained formulation is provided
to account for forecast errors and quantify the flexibility in
terms of an envelope for robust DR intraday market bids [26],
[27]. The flexibility envelope provides the aggregators with
the maximum, hourly flexible energy that is available to bid at
9am every morning for the next 15 hours. The aggregators can
decide whether to bid the maximum available flexible energy
or less according to their risk management strategies.

A. Multi-site optimization

In this section, the schedules for a charging station equipped
with a battery, PV generation and a fleet of K EVs over
a finite time horizon with hourly time step is provided. Let
T = {0, . . . , T − 1} where T is the length of the horizon
considered with a time discretization t. The EV k ∈ [1,K]
can charge (Ck

t ) and discharge (Dk
t ), acquiring energy needed

for each trip (Ek,tr
t ), as well as providing an upward service

by reducing charging (Ak,c,n
t , Ak,c,l

t for national and local
service, respectively) or increasing discharging (Ak,d,n

t , Ak,d,l
t

for national and local service, respectively) in the form of
availability, whenever it is connected to the grid, at the
charging station (T k,sta

t ) or at the service site (T k,ser
t ) [28].

The charging/discharging power of the EV can be regulated
between 0 and a maximum power level allowed by the charger
(P k

max). Similarly, the state of charge (SoC) of each EV at
each timestep SoCk

t is limited between 10% − 90% of the
maximum EV energy capacity EEV

cap . The same input and
control variables are considered for the onsite battery. The
battery can charge (CB

t ) and discharge (DB
t ), as well as

providing an upward balancing service by reducing charging
(AB,c,n

t , AB,c,l
t for national and local service, respectively)

or increasing discharging (AB,d,n
t , AB,d,l

t for national and
local service, respectively) in the form of availability. The
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Fig. 3. The assumed market framework.

charging/discharging power of the battery can be regulated be-
tween 0 and a maximum allowed power level (PB

max). Finally,
the battery SoC at each timestep SoCB

t is limited between
10%−90% of the maximum battery energy capacity EB

cap. The
electricity prices πel

t , the national and local flexibility service
prices for availability, πA,n

t and πA,l
t , are known ahead of the

time horizon. The trips that the EVs need to take, including
the length of the trip in hours and the energy required, the
onsite generation and load of the station are forecasted for the
whole time horizon, thus they are considered as given in the
deterministic formulation.

The objective function maximizes revenues from flexibility
service provision, while meeting the station energy and EV
energy trip requirements and maximizing the station self-
consumption (i.e. minimizing the energy imported from the
grid Eimp

t ), as shown below:

max
∑
t∈T

(
K∑

k=1

(
(Ak,c,n

t +Ak,d,n
t +AB,c,n

t +AB,d,n
t ) · πA,n

t

+ (Ak,c,l
t +Ak,d,l

t +AB,c,l
t +AB,d,l

t ) · πA,l
t

− Ck
t · πel

t · T k,ser
t − ϵp ·Dk

t

)
+ (AB,c,n

t +AB,d,l
t ) · πA,n

t + (AB,c,l
t +AB,d,l

t ) · πA,l
t

− Eimp
t · πel

t − ϵp ·DB
t

)
(1)

where T k,ser
t , T k,sta

t = 1 if the EV is connected to a CP
at the service site or at the charging station, respectively,
otherwise T k,ser

t , T k,sta
t = 0. ϵp is a penalty factor that

penalizes onsite battery and EV discharging, thus minimizing
battery cycling, while only minimally affecting revenues from
providing availability as a service. A zero feed-in tariff is
assumed, indicating that no revenues are generated for selling
energy Eexp

t back to the grid [29].
The operating models of the station, battery, and EVs

include several constraints [26]. The energy balance of the
entire charging station is given by:

Eexp
t − Eimp

t = El
t − EPV

t −DB
t + CB

t

+

K∑
k=1

(Ck
t −Dk

t ) · T
k,sta
t , ∀t ∈ T

(2)

with El
t and EPV

t being the onsite load and generation,
respectively.
The constraint seen in Eq. (3) describes the EV battery’s
energy balance, taking into account the energy needed for

mobility purposes as well as the losses caused by charging
and discharging efficiencies, ηEV

c and ηEV
d .

SoCk
t = SoCk

t−1 + ηEV
c · Ck

t

− Dk
t

ηEV
d

− Ek,tr
t , ∀t ∈ T , k ∈ [1,K]

(3)

When the EVs are not connected to the grid, the charging,
discharging and availability for services are zero:

Ck
t = Dk

t = Ak,c,l
t = Ak,d,l

t = Ak,c,n
t = Ak,d,n

t = 0,

∀t ∈ {T k,sta
t , T k,ser

t = 1}, k ∈ [1,K]
(4)

The constraint seen in Eq. (5) limits the SoC of each EV
between the lower and upper bounds of the battery’s energy
content, which is assumed to be the same for each EV:

0.1 · EEV
cap ≤ SoCk

t ≤ 0.9 · EEV
cap , ∀t ∈ T , k ∈ [1,K] (5)

Moreover, each EV battery cannot charge and discharge at the
same time:

Ck
t ·Dk

t = 0, ∀t ∈ T , k ∈ [1,K] (6)

When committing to service availability, the maximum power
allowed by the charger P k

max, as well as whether the EV is
charging or discharging, need to be taken into account:


Ak,d,n

t +Ak,d,n
t +Dk

t ≤ P k
max

Ak,c,n
t +Ak,c,n

t ≤ Ck
t ∀t ∈ T , k ∈ [1,K]

(Dk
t − Ck

t ) + (Ak,d,n
t +Ak,d,n

t +Ak,c,n
t +Ak,c,n

t ) ≤ P k
max

(7)
Simultaneously, when the bid is accepted and the service is
called on, it is important to ensure that the committed energy
is available for the service to be sustained for the required
time ts:


xk
t + Ck

t · ηEV
c − (Dk

t +Ak,d,n
t +Ak,d,n

t )·ts
ηEV
d

≥ 0.1 · EEV
cap

xk
t ≤ SoCk

t ∀t ∈ T , k ∈ [1,K]

xk
t ≤ SoCk

t−1

(8)

where xk
t is an auxiliary decision variable introduced for

linearisation. The flexibility service provision only consid-
ers availability, rather than utilization, which occurs infre-
quently [30]. Finally, the EV battery’s energy level is at the
required level EEV

req set by aggregator at the end of each day:

SoCk
T−1 = EEV

req (9)

Similarly, all the constraints in Eqs. (3)-(8) are imposed for
the battery ∀t ∈ T , as follows:

SoCB
t = SoCB

t−1 + ηBc · CB
t − DB

t

ηBd
(10)

CB
t = DB

t = AB,c,l
t = AB,d,l

t = AB,c,n
t = AB,d,n

t = 0 (11)

0.1 · EB
cap ≤ SoCB

t ≤ 0.9 · EB
cap (12)

CB
t ·DB

t = 0 (13)

AB,d,n
t +AB,d,n

t +DB
t ≤ PB

max (14)

AB,c,n
t +AB,c,n

t ≤ CB
t (15)
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(DB
t − CB

t ) + (AB,d,n
t +AB,d,n

t +AB,c,n
t +AB,c,n

t ) ≤ PB
max

(16)

xB
t + CB

t · ηBc − (DB
t +AB,d,n

t +AB,d,n
t ) · ts

ηBd
≥ 0.1 · EB

cap (17)

xB
t ≤ SoCB

t (18)

xB
t ≤ SoCB

t−1 (19)

SoCB
T−1 = EB

req (20)

where xb
t is the auxiliary decision variable introduced for

linearisation, and ηBc and ηBd are the battery’s charging and
discharging efficiencies, respectively.

B. Accounting for uncertainty

In order to mitigate the effect of uncertainty on the market
bidding strategy, an intraday chance-constrained optimization
is formulated [31]. The uncertainty derives from the forecasts
of onsite load and PV generation, and EV charging sessions
(i.e. arrival and departure times, and charging energy demand).
Chance-constraints are probabilistic constraints that ensure
that the limits will hold with a pre-described probability
1− ϵ, where ϵ is the acceptable violation probability. This is
done by replacing the original constraints with tightened con-
straints, where tightenings represent security margins against
uncertainty and are evaluated using MC simulations. The
optimization, shown in Fig. 4, is solved using an iterative
algorithm which alternates between solving a deterministic
optimization with tightened constraints, and evaluating the
following tightenings at each iteration m:

ΩEV
m = |SoCEV,1−ϵ

t | − |SoCEV,0
t |

ΩB
m = |SoCB,1−ϵ

t | − |SoCB,0
t |

(21)

with SoCEV
m =

∑K
k=1 SoCk

t and superscript 0 indicates the
solution with zero forecast error. If the maximum changes in
the tightenings between two subsequent iterations are below
a certain threshold ηΩ, the algorithm has converged and a
feasible solution has been found. The solution represents the
maximum, hourly flexible energy that is available to bid
while ensuring the station operational constraints and the user
comfort boundaries.

III. REAL-TIME CONTROLLER

A finite horizon MPC-based controller to account for real-
time operational uncertainty while reserving the flexible en-
ergy to provide in case of accepted bids is formulated in this
section. The full formulation is given by:

min
∑
t∈T

(
K∑

k=1

(
Ck

t · πel
t · T k,ser

t + ϵp ·Dk
t

)
+ Eimp

t · πel
t + ϵp ·DB

t

)
subject to Eqs. (4)-(9), Eqs. (11)-(20)

(22)
The following two constraints are also added to provide the
flexible energy when the bids are accepted:

SoCk
t = SoCk

t−1 + ηEV
c · Ck

t − Dk
t

ηEV
d

−Ek,tr
t − Ek,bid

t · T k,bid
t ,

∀t ∈ T , k ∈ [1,K]
(23)
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Fig. 4. The proposed chance-constrained optimization.

SoCB
t = SoCB

t−1 + ηBc · CB
t − DB

t

ηBd
− EB,bid

t ·TB,bid
t ,

∀t ∈ T
(24)

with Ek,bid
t , EB,bid

t representing the flexible energy from EVs
and battery, respectively, bid in the intraday DR markets,
T k,bid
t , TB,bid

t = 1 in case of accepted bids, otherwise
T k,bid
t , TB,bid

t = 0. No revenues are assumed for flexibility
provision in the form of utilization.

At each time step t, the optimization in Eqs. (22)-(24) takes
the real-time measurement and the acceptance of market bids
as inputs, and determines the optimal charging/discharging
schedules for the EV fleet and onsite battery for the full
horizon T = {t, ..., t + T − 1} using the updated forecasts
of onsite load and PV generation, and EV charging sessions.
However, only the optimal schedules at time step t are applied.

IV. CASE STUDY

This section provides an overview of the performance of the
proposed tool in terms of energy cost reduction and genera-
tion of new revenues from demand-side flexibility provision.
Additional studies were conducted to investigate the optimal
technical and social settings to fully exploit the demand-side
flexibility, leading to higher cost-benefits for the aggregators.

A. Test system and assumptions

A case study was conducted on the NEST and move
demonstrators at Empa, in Switzerland [23]. This test system
representing the PV-battery charging station included a 168
kWh battery, 110 kWp PV systems, and 4 CPs. Historical data
for PV generation and load for August 2022 were used to test
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the proposed tool. Charging data for a fleet of 4 EVs with
V2G technology and 40 kWh battery each, moving between
the charging station and the service site, was sampled from real
data provided by TotalEnergies with over 2 million charging
sessions and 5317 CPs across the Netherlands [22]. The V2X
operation of the EV fleet was considered exclusively at the
charging station, as described in Eq. (2). A maximum allowed
power level P k

max = 15 kW and PB
max = 80 kW were assumed

for the EVs and onsite battery, respectively. The required
battery level set by the aggregator at the end of each day
was EEV

req = 0.9 · EEV
cap and EB

req = 0.9 · EB
cap. Electricity

and national flexibility service prices for availability, πel
t and

πA,n
t , were taken from [28] for August 2022. In such a price

modeling, the prices for national flexibility services reflect
the need for inertia of transmission operators following the
integration of renewable sources. Higher prices are modeled
when the hourly share of renewable integration if higher, thus
corresponding to lower system’s inertia and a higher need
for the system operator [32]. The same price variation of
national flexibility services was assumed for local flexibility
services, as the congestion risk increases when the hourly
share of renewable integration is higher, similar to the inertia
need in national flexibility price modeling. However, for local
services, different mean values were considered based on the
locations of the charging station or service site, i.e. higher
mean values for locations with a higher congestion risk.
In this work, the service site, which is located in urban
areas, has a higher congestion risk than the charging station,
resulting in higher local service prices. The assumed prices are
shown in Fig. 5 for one week. Dynamic containment [33] and
congestion management [34] were considered as national and
local flexibility services, respectively. A finite time horizon
of 15 hours with time step t = 1h was used for both the
multi-site optimization and real-time controller. The electricity
and flexibility prices were assumed to be known ahead of this
horizon, which is in line with the current intraday energy and
balancing service market arrangements. The required time for
the flexibility service to be sustained when called on was
ts = 1h. The multi-site optimization was performed once
every day for the horizon 9am-11pm to calculate the intraday
market bids, with ϵp = 0.05 to minimize battery cycling.
Conversely, the real-time MPC controller was run hourly with
a 15 hour horizon. However, the aggregator becomes aware of
accepted bids only after the intraday market clearing at 9am
every day. The forecasts of onsite load and PV generation,
and EV charging sessions are fed as inputs to both the multi-
site optimization and the real-time controller. Long short-term
memory (LSTM) neural networks with 3 layers and 15 neurons
per layer were used for these forecasts. The input and output
rolling windows of the LSTM models were one week and
15 hours, respectively. In order to capture the seasonal trend,
historical data from June to July 2022 was used to train and
test the LSTM models for onsite load and PV generation.
Synthetic data from January to July 2022 was used for the
prediction of EV charging sessions. The training and testing
split was 80%/20%, while the data from August was used for
the validation of all predictive models. Weather data were used

0 50 100 150
Time [h]

0

10

20

30

40

50

60

C
H

F
/M

W
h

Electricity
Local service (charging site)
Local service (service site)
National service

Fig. 5. The assumed prices for electricity, availability for local (charging
station and service site), and national flexibility services over a week.

as additional features to improve the predictive performance.
More specifically, for the EV charging sessions, categorical
features such as the day of the week were also considered, and
new features were created to capture the charging behaviour
of each EV in the fleet [22]. Subsequently, a causality-based
feature selection approach was used to select the most relevant
features for training, thus enhancing the performance. As an
example, the forecast error distribution of the charging station
load is shown in Fig. 6. The error distributions of onsite
load and PV generation, charging session duration and energy
demand, were used for the MC simulations to account for
uncertainty, enforcing the chance constraints with an ϵ = 5%
violation probability.

B. The flexibility envelope

This section focuses on evaluating the flexibility envelope
through which aggregators can make robust flexibility bids
in intraday DR markets according to their risk management
strategies.

The optimal charging schedule resulting from the chance-
constrained, multi-site optimization for a single EV over the
time horizon 9am-11pm is shown in Fig. 7. The EV was at
the charging station (indicated in the grey box area), on a trip
and at the service site (in the red and light blue box area),
respectively. Following the trips, the battery SoC decreased
due to the energy consumed for travelling. When the EV
charges, it gets paid for offering availability to reduce its
charging and increase its discharging. As a result, the EV
charged at the service site when the price for local service pro-
vision was significantly higher. Subsequently, the EV charged
again upon returning to the charging station in the evening, as
constrained by Eq. (9). The optimization resulted in a similar
charging schedule for the onsite battery, which provided only
national service availability, as the prices for such services
were always higher than the local ones at the charging station.
Simultaneously, the chance-constrained optimization aimed at
reducing the overall electricity costs of the charging station,
as shown in Fig. 8. No electricity was imported from the grid
when the PV generation was sufficient to satisfy the load.
Subsequently, when no PV generation was available in the
evening, the battery was first discharged to meet the load as the
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7Fig. 7. The optimal charging schedule for a single EV over the time horizon
9am-11pm.

electricity price was high. Finally, when the electricity price
decreased, the battery was charged by importing energy from
the grid to fulfil the constraint in Eq. (20).

The chance-constrained, multi-site optimization resulted in
a net revenue (i.e. revenues net of electricity costs) of CHF
3′142 for August 2022. The available flexible energy from EVs
and the onsite battery to bid in DR markets is aggregated and
shown in Fig. 9 in the form of a flexibility envelope for the
whole considered month. Here, the envelope resulting from
the proposed chance-constrained optimization, indicated as
approach i), was compared against: ii) the naive forecast-based
approach in which the forecasts are assumed to be perfectly
accurate and considered in the deterministic optimization, iii)
the deterministic approach in which real measurements are
used as inputs to the optimization, providing the true flexibility
potential.

The proposed approach i) resulted in more conservative
estimates of the available flexible energy, preventing over-
bidding in DR markets, thus avoiding penalties. The errors
in the hourly estimates of the available flexible energy for
approaches i)-ii) against the true values provided by approach
iii) are shown in Fig. 10, highlighting the better performance
of the proposed chance-constrained optimization in terms
of estimating the true flexibility potential. In terms of net
revenues, the proposed approach i) decreased the revenues
only by CHF 11 compared to the true revenues resulting
from approach iii). Conversely, approach ii) increased the
revenues by CHF 114, but this increase needs to be offset
by overbidding penalties, resulting in a significantly lower net
revenue.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time [h]

0

50

100

150

E
ne

rg
y 

[k
W

h]

0

0.005

0.01

0.015

0.02

0.025

P
ric

e 
[C

H
F

/k
W

h]

PV
Load
Import
BESS SoC
Electricity

Fig. 8. The cost-optimization for the charging station over the time horizon
9am-11pm.

Additional studies were conducted to investigate the best
technology, i.e. unidirectional smart charging (V1G) and V2G,
to fully exploit the demand-side flexibility and quantify the
cost-benefits of a more interactive involvement of EV users
in flexibility provision schemes. Using the proposed multi-
site, chance-constrained optimization, different settings were
compared in terms of net revenues against the described
baseline approach with V2G technology in Table 10: i) only
V1G was available, ii) the EVs were flexible on arrival and
departure times by 1 hour, iii) EVs were flexible on arrival and
departure times by 2 hours. The results highlighted that with
a small fleet of 4 EVs the net revenues over a month could
be increased by up-to 14% when considering V2G technology
and by up-to 5% by asking the EV users in advance if they
would be flexible with their parking times. This resulted in
a single user’s revenue increasing by-up to CHF 40 in a
month, significantly incentivizing their participation in flexibil-
ity provision. Such revenue increase could be interpreted as the
minimum discomfort price of EV users, i.e. the minimum price
at which individual EV users would be willing to reschedule
their trips in exchange for higher revenues.

C. The real-time performance

In this section, the performance of the MPC controller in
responding to real-time measurements and acceptance of the
intraday market bids was analzyed. In Fig. 11, the changes in
the aggregated SoC of the EVs and onsite battery following the
acceptance of the bids are shown over a week. It was assumed
that one bid was accepted per day. It is worth noting the main
discrepancies relate to the provision of the bid flexible energy
and the following recharging of the batteries. This resulted in
an energy cost increase of CHF 516 as no revenues for flex-
ibility utilization were considered. However, such an increase
was significantly lower than the net revenue resulting from
providing availability as a service in intraday DR markets,
highlighting the cost-benefits of providing flexibility services
for the aggregators.

D. Discussion

The proposed novel operational tool reduced the energy
costs of EV aggregators with PV-battery charging station and
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Fig. 9. The flexibility envelope for August 2022 according to three different
approaches.
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Fig. 10. The error histogram of the hourly estimates of the available flexible
energy for approaches i)-ii) against the true values provided by approach iii).

enabled the generation of new revenues from the provision of
demand-side flexibility. The case study showed that such new
revenues offset and exceeded the energy costs of the charging
station, resulting in a net revenue of CHF 3′142 over a
specific month. Considering the uncertainty when quantifying
the available flexible energy to bid in markets slightly reduced
the revenues because of the increased robustness of the ap-
proach, but prevented overbidding. The additional studies on
the optimal technical and social settings to fully exploit the
demand-side flexibility showed that the net revenues could be
increased by up to 14% over a month using V2G technology
and by up to 5% with EV users flexible with their parking
times, resulting in an individual user’s revenue increase of up
to CHF 40. While the acceptance of market bids marginally
increased the energy costs of the charging station, the resulting
net revenues from flexibility provision significantly surpassed
such an increase.

The proposed approach still has a few limitations that need
to be considered. The resulting net revenues strictly depend
on the assumed market framework, electricity, and flexibility
service prices. While flexibility markets show promise in man-
aging local congestion or supporting the transmission grids,
only a few pilot projects currently exist, and it is challenging
to foresee their development in the coming years. With the
integration of more renewable generation sources into future

TABLE I
COMPARISON OF NET REVENUES WITH DIFFERENT TECHNICAL AND

SOCIAL SETTINGS

Settings
Baseline V1G 1h Flex

User
2h Flex

User

Net revenue [CHF]
3′142 2′692 3′207 3′300

− (−14%) (+2%) (+5%)
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Fig. 11. The aggregated SoC of the EVs and onsite battery over a week with
and without accepted intraday market bids.

power systems, leading to higher operational uncertainty, the
prices of ancillary services, and consequently the revenues
from flexibility provision, are likely to rise [32]. Nevertheless,
the proposed tool can adapt to various market frameworks and
prices, technical and social settings, consistently leading to
reduced energy costs and new revenue generation. The case
study only showed the benefits of using a fleet of 4 EVs,
but the tool can easily scale to larger fleets as the approach
iteratively solves a deterministic optimization with tightened
constraints and the resolution of a deterministic optimization
generally requires only a few seconds, specifically less than
60s in this work using a standard machine with 12 CPU cores
and 64GB RAM. A constant charging power per hour was
assumed for both the EVs and onsite battery. However, in
practice, the charging power is higher initially and gradually
decreases as the battery approaches the maximum SoC. In
terms of predictive model training for onsite load and PV
generation, and EV charging sessions, a single data split was
used, but performing more random splits might better prevent
biased models. However, the models were also tested on
different validation sets, such as different months of the year,
showing similar predictive performance. Similarly, training
the models using historical data from several years may
enhance such performance as allows to capture seasonal or
yearly patterns. However, using larger training datasets can
significantly increase the training time, posing a challenge
for real-time applications where the predictive models would
need to be periodically updated to incorporate newly col-
lected data. There are several solutions to reduce the training
computational times, such as the feature selection approach
we used in this work. Such an approach can significantly
reduce the training computational times however, it requires
a large number of CPU cores to quickly identify the relevant
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features. In all our studies, a zero sell price for energy was
assumed. Making energy arbitrage profitable could further
increase the net revenues, albeit with higher battery cycling.
Similarly, the aggregator’s net revenues could be significantly
enhanced if the flexibility provision in the form of utilization
is remunerated.

V. CONCLUSION

The electrification of urban mobility can support grid de-
carbonization through the provision of demand-side flexibility.
However, there is a need for novel operational tools for
EV aggregators to facilitate such provision while reducing
their energy costs. This paper proposes leveraging data-driven
techniques and physics models in a novel tool for optimal
V2X operation of EV fleets with a PV-battery charging station.
The tool is designed to minimize aggregator’s energy costs
and maximize new revenues from the provision of flexibility,
by providing risk-aware flexibility quantification, market bids,
and real-time control decisions. Using a case study on the
NEST and move demonstrators at Empa, in Switzerland, we
showed that the revenues stemming from the provision of
flexibility in the form of availability significantly exceeded the
energy costs of the charging station, even when the market
bids were accepted in real-time operation with no revenues
from utilization as a service. Results also showed that V2G
technology and a more interactive involvement of EV users
in the provision schemes can significantly enhance the overall
cost-benefits. This highlights the need for implementing new
incentives for the installation of V2G chargers and reshaping
the regulatory framework to incentivize active participation
of EV users, either by staying within the boundaries of their
comfort or by appropriately compensating for their discomfort.
Future work will focus on sector coupling by equipping the
charging station with both electrical and thermal resources,
enabling a more comprehensive cost-benefit and feasibility
analysis of V2X operations for demand-side flexibility pro-
vision.
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