References
1 Roos EM,Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol 2016; 12: 92-101.
2 O’Neill TW, McCabe PS,McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol 2018; 32: 312-326.
3 Loeser RF, Goldring SR, Scanzello CR,Goldring MB. Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatism 2012; 64: 1697-1707.
4 Palazzo C, Nguyen C, Lefevre-Colau MM, Rannou F,Poiraudeau S. Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 2016; 59: 134-138.
5 Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM,Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12: 580-592.
6 Liu-Bryan R,Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol 2015; 11: 35-44.
7 Frampton JE. Empagliflozin: A Review in Type 2 Diabetes. Drugs 2018; 78: 1037-1048.
8 Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A, Ishikawa K, Watanabe S, Picatoste B, Vargas-Delgado AP, Flores-Umanzor EJ, Sanz J, Fuster V,Badimon JJ. Empagliflozin Ameliorates Diastolic Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic Heart Failure: A Multimodality Study. JACC Cardiovasc Imaging 2021; 14: 393-407.
9 Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovács Á, Fülöp G, Falcão-Pires I, Reusch PH, Linthout SV, Papp Z, van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschöpe C, Mügge A, Bagi Z, Sossalla S,Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res 2021; 117: 495-507.
10 Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S,Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. EBioMedicine 2017; 20: 137-149.
11 Shakerinasab N, Azizi M, Mansourian M, Sadeghi H, Salaminia S, Abbasi R, Shahaboddin ME,Doustimotlagh AH. Empagliflozin Exhibits Hepatoprotective Effects Against Bile Duct Ligation-induced Liver Injury in Rats: A Combined Molecular Docking Approach to In Vivo Studies. Curr Pharm Des 2022; 28: 3313-3323.
12 Cho C, Kang LJ, Jang D, Jeon J, Lee H, Choi S, Han SJ, Oh E, Nam J, Kim CS, Park E, Jeong SY, Park CH, Shin YS, Eyun SI,Yang S. Cirsium japonicum var. maackii and apigenin block Hif-2α-induced osteoarthritic cartilage destruction. J Cell Mol Med 2019; 23: 5369-5379.
13 Park E, Lee CG, Han SJ, Yun SH, Hwang S, Jeon H, Kim J, Choi CW, Yang S,Jeong SY. Antiosteoarthritic Effect of Morroniside in Chondrocyte Inflammation and Destabilization of Medial Meniscus-Induced Mouse Model. Int J Mol Sci 2021; 22.
14 Gutthann SP, García Rodríguez LA,Raiford DS. Individual nonsteroidal antiinflammatory drugs and other risk factors for upper gastrointestinal bleeding and perforation. Epidemiology 1997; 8: 18-24.
15 Fu J, Xu H, Wu F, Tu Q, Dong X, Xie H,Cao Z. Empagliflozin inhibits macrophage inflammation through AMPK signaling pathway and plays an anti-atherosclerosis role. Int J Cardiol 2022; 367: 56-62.
16 Gohari S, Reshadmanesh T, Khodabandehloo H, Karbalaee-Hasani A, Ahangar H, Arsang-Jang S, Ismail-Beigi F, Dadashi M, Ghanbari S, Taheri H, Fathi M, Muhammadi MJ, Mahmoodian R, Asgari A, Tayaranian M, Moharrami M, Mahjani M, Ghobadian B, Chiti H,Gohari S. The effect of EMPAgliflozin on markers of inflammation in patients with concomitant type 2 diabetes mellitus and Coronary ARtery Disease: the EMPA-CARD randomized controlled trial. Diabetol Metab Syndr 2022; 14: 170.
17 La Grotta R, de Candia P, Olivieri F, Matacchione G, Giuliani A, Rippo MR, Tagliabue E, Mancino M, Rispoli F, Ferroni S, Berra CC, Ceriello A,Prattichizzo F. Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cell Mol Life Sci 2022; 79: 273.
18 Li N,Zhou H. SGLT2 Inhibitors: A Novel Player in the Treatment and Prevention of Diabetic Cardiomyopathy. Drug Des Devel Ther 2020; 14: 4775-4788.
19 Maayah ZH, Ferdaoussi M, Takahara S, Soni S,Dyck JRB. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacology 2021; 29: 269-279.
20 Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M,de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165: 49-65.
21 Motta F, Barone E, Sica A,Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64: 222-238.
22 Abramoff B,Caldera FE. Osteoarthritis: Pathology, Diagnosis, and Treatment Options. Med Clin North Am 2020; 104: 293-311.
23 Hu Q,Ecker M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int J Mol Sci 2021; 22.
24 Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi J,Elisseeff JH. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med 2017; 23: 775-781.
25 Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M,Demaria M. Cellular Senescence: Defining a Path Forward. Cell 2019; 179: 813-827.
26 Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S,Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8: 56.
27 Choi MC, Jo J, Park J, Kang HK,Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8.
28 Wang XF, Zhang AP, Sun ZY, Liu C, Kuang LH,Tian JW. [Expression of NF-κB in a degenerative human intervertebral disc model]. Zhonghua Yi Xue Za Zhi 2017; 97: 1324-1329.
29 Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D,Musa AE. NF-κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234: 17187-17204.
30 Zheng Y, Lin Y, Chen Z, Jiao Y, Yuan Y, Li C, Xu X,Cao P. Propionibacterium acnes induces intervertebral discs degeneration by increasing MMP-1 and inhibiting TIMP-1 expression via the NF-κB pathway. Int J Clin Exp Pathol 2018; 11: 3445-3453.
31 Lin Y, Tang G, Jiao Y, Yuan Y, Zheng Y, Chen Y, Xiao J, Li C, Chen Z,Cao P. Propionibacterium acnes Induces Intervertebral Disc Degeneration by Promoting iNOS/NO and COX-2/PGE(2) Activation via the ROS-Dependent NF-κB Pathway. Oxid Med Cell Longev 2018; 2018: 3692752.
32 Wang J, Hu J, Chen X, Huang C, Lin J, Shao Z, Gu M, Wu Y, Tian N, Gao W, Zhou Y, Wang X,Zhang X. BRD4 inhibition regulates MAPK, NF-κB signals, and autophagy to suppress MMP-13 expression in diabetic intervertebral disc degeneration. Faseb j 2019; 33: 11555-11566.