References
1 Roos EM,Arden NK. Strategies for the prevention of knee
osteoarthritis. Nat Rev Rheumatol 2016; 12: 92-101.
2 O’Neill TW, McCabe PS,McBeth J. Update on the epidemiology, risk
factors and disease outcomes of osteoarthritis. Best Pract Res Clin
Rheumatol 2018; 32: 312-326.
3 Loeser RF, Goldring SR, Scanzello CR,Goldring MB. Osteoarthritis: A
disease of the joint as an organ. Arthritis & Rheumatism 2012; 64:
1697-1707.
4 Palazzo C, Nguyen C, Lefevre-Colau MM, Rannou F,Poiraudeau S. Risk
factors and burden of osteoarthritis. Ann Phys Rehabil Med 2016; 59:
134-138.
5 Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM,Sokolove
J. Low-grade inflammation as a key mediator of the pathogenesis of
osteoarthritis. Nat Rev Rheumatol 2016; 12: 580-592.
6 Liu-Bryan R,Terkeltaub R. Emerging regulators of the inflammatory
process in osteoarthritis. Nat Rev Rheumatol 2015; 11: 35-44.
7 Frampton JE. Empagliflozin: A Review in Type 2 Diabetes. Drugs 2018;
78: 1037-1048.
8 Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Garcia-Ropero A,
Ishikawa K, Watanabe S, Picatoste B, Vargas-Delgado AP, Flores-Umanzor
EJ, Sanz J, Fuster V,Badimon JJ. Empagliflozin Ameliorates Diastolic
Dysfunction and Left Ventricular Fibrosis/Stiffness in Nondiabetic
Heart Failure: A Multimodality Study. JACC Cardiovasc Imaging 2021; 14:
393-407.
9 Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, Zhazykbayeva
S, Kovács Á, Fülöp G, Falcão-Pires I, Reusch PH, Linthout SV, Papp Z,
van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschöpe C, Mügge
A, Bagi Z, Sossalla S,Hamdani N. Empagliflozin improves endothelial and
cardiomyocyte function in human heart failure with preserved ejection
fraction via reduced pro-inflammatory-oxidative pathways and protein
kinase Gα oxidation. Cardiovasc Res 2021; 117: 495-507.
10 Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E,
Kaneko S,Ota T. SGLT2 Inhibition by Empagliflozin Promotes Fat
Utilization and Browning and Attenuates Inflammation and Insulin
Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice.
EBioMedicine 2017; 20: 137-149.
11 Shakerinasab N, Azizi M, Mansourian M, Sadeghi H, Salaminia S, Abbasi
R, Shahaboddin ME,Doustimotlagh AH. Empagliflozin Exhibits
Hepatoprotective Effects Against Bile Duct Ligation-induced Liver Injury
in Rats: A Combined Molecular Docking Approach to In Vivo Studies. Curr
Pharm Des 2022; 28: 3313-3323.
12 Cho C, Kang LJ, Jang D, Jeon J, Lee H, Choi S, Han SJ, Oh E, Nam J,
Kim CS, Park E, Jeong SY, Park CH, Shin YS, Eyun SI,Yang S. Cirsium
japonicum var. maackii and apigenin block Hif-2α-induced osteoarthritic
cartilage destruction. J Cell Mol Med 2019; 23: 5369-5379.
13 Park E, Lee CG, Han SJ, Yun SH, Hwang S, Jeon H, Kim J, Choi CW, Yang
S,Jeong SY. Antiosteoarthritic Effect of Morroniside in Chondrocyte
Inflammation and Destabilization of Medial Meniscus-Induced Mouse Model.
Int J Mol Sci 2021; 22.
14 Gutthann SP, García Rodríguez LA,Raiford DS. Individual nonsteroidal
antiinflammatory drugs and other risk factors for upper gastrointestinal
bleeding and perforation. Epidemiology 1997; 8: 18-24.
15 Fu J, Xu H, Wu F, Tu Q, Dong X, Xie H,Cao Z. Empagliflozin inhibits
macrophage inflammation through AMPK signaling pathway and plays an
anti-atherosclerosis role. Int J Cardiol 2022; 367: 56-62.
16 Gohari S, Reshadmanesh T, Khodabandehloo H, Karbalaee-Hasani A,
Ahangar H, Arsang-Jang S, Ismail-Beigi F, Dadashi M, Ghanbari S, Taheri
H, Fathi M, Muhammadi MJ, Mahmoodian R, Asgari A, Tayaranian M,
Moharrami M, Mahjani M, Ghobadian B, Chiti H,Gohari S. The effect of
EMPAgliflozin on markers of inflammation in patients with concomitant
type 2 diabetes mellitus and Coronary ARtery Disease: the EMPA-CARD
randomized controlled trial. Diabetol Metab Syndr 2022; 14: 170.
17 La Grotta R, de Candia P, Olivieri F, Matacchione G, Giuliani A,
Rippo MR, Tagliabue E, Mancino M, Rispoli F, Ferroni S, Berra CC,
Ceriello A,Prattichizzo F. Anti-inflammatory effect of SGLT-2 inhibitors
via uric acid and insulin. Cell Mol Life Sci 2022; 79: 273.
18 Li N,Zhou H. SGLT2 Inhibitors: A Novel Player in the Treatment and
Prevention of Diabetic Cardiomyopathy. Drug Des Devel Ther 2020; 14:
4775-4788.
19 Maayah ZH, Ferdaoussi M, Takahara S, Soni S,Dyck JRB. Empagliflozin
suppresses inflammation and protects against acute septic renal injury.
Inflammopharmacology 2021; 29: 269-279.
20 Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z,
Malaise M,de Seny D. Chondrocyte dedifferentiation and osteoarthritis
(OA). Biochem Pharmacol 2019; 165: 49-65.
21 Motta F, Barone E, Sica A,Selmi C. Inflammaging and Osteoarthritis.
Clin Rev Allergy Immunol 2023; 64: 222-238.
22 Abramoff B,Caldera FE. Osteoarthritis: Pathology, Diagnosis, and
Treatment Options. Med Clin North Am 2020; 104: 293-311.
23 Hu Q,Ecker M. Overview of MMP-13 as a Promising Target for the
Treatment of Osteoarthritis. Int J Mol Sci 2021; 22.
24 Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, Chung
JW, Kim DH, Poon Y, David N, Baker DJ, van Deursen JM, Campisi
J,Elisseeff JH. Local clearance of senescent cells attenuates the
development of post-traumatic osteoarthritis and creates a
pro-regenerative environment. Nat Med 2017; 23: 775-781.
25 Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C,
Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E,
Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF,
Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D,
Serrano M,Demaria M. Cellular Senescence: Defining a Path Forward. Cell
2019; 179: 813-827.
26 Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S,Xiao
G. Osteoarthritis: pathogenic signaling pathways and therapeutic
targets. Signal Transduct Target Ther 2023; 8: 56.
27 Choi MC, Jo J, Park J, Kang HK,Park Y. NF-κB Signaling Pathways in
Osteoarthritic Cartilage Destruction. Cells 2019; 8.
28 Wang XF, Zhang AP, Sun ZY, Liu C, Kuang LH,Tian JW. [Expression of
NF-κB in a degenerative human intervertebral disc model]. Zhonghua Yi
Xue Za Zhi 2017; 97: 1324-1329.
29 Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D,Musa AE. NF-κB
targeting for overcoming tumor resistance and normal tissues toxicity. J
Cell Physiol 2019; 234: 17187-17204.
30 Zheng Y, Lin Y, Chen Z, Jiao Y, Yuan Y, Li C, Xu X,Cao P.
Propionibacterium acnes induces intervertebral discs degeneration by
increasing MMP-1 and inhibiting TIMP-1 expression via the NF-κB pathway.
Int J Clin Exp Pathol 2018; 11: 3445-3453.
31 Lin Y, Tang G, Jiao Y, Yuan Y, Zheng Y, Chen Y, Xiao J, Li C, Chen
Z,Cao P. Propionibacterium acnes Induces Intervertebral Disc
Degeneration by Promoting iNOS/NO and COX-2/PGE(2) Activation via the
ROS-Dependent NF-κB Pathway. Oxid Med Cell Longev 2018; 2018: 3692752.
32 Wang J, Hu J, Chen X, Huang C, Lin J, Shao Z, Gu M, Wu Y, Tian N, Gao
W, Zhou Y, Wang X,Zhang X. BRD4 inhibition regulates MAPK, NF-κB
signals, and autophagy to suppress MMP-13 expression in diabetic
intervertebral disc degeneration. Faseb j 2019; 33: 11555-11566.