References
1. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, Lin X, Zhang J (2016) Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep-Uk 6:27583. https://doi.org/10.1038/srep27583 2. Baatar D, Siddiqi MZ, Im WT, Ul KN, Hwang SG (2018) Anti-Inflammatory Effect of Ginsenoside Rh2-Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine Macrophage Cells. J Med Food 21(10):951-960. https://doi.org/10.1089/jmf.2018.4180 3. Williams B, Lees F, Tsangari H, Hutchinson MR, Perilli E, Crotti TN (2020) Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators Inflamm 2020:6245798. https://doi.org/10.1155/2020/6245798 4. Maiuri AR, Li H, Stein BD, Tennessen JM, O’Hagan HM (2018) Inflammation-induced DNA methylation of DNA polymerase gamma alters the metabolic profile of colon tumors. Cancer Metab 6:9. https://doi.org/10.1186/s40170-018-0182-7 5. Zheng Q, Wang Y, Liu Q, Dong X, Xie Z, Liu X, Gao W, Bai X, Li Z (2020) FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal kinase (JNK)-dependent autophagy. Life Sci 250:117551. https://doi.org/10.1016/j.lfs.2020.117551 6. Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferre P, Bourron O, Foufelle F (2018) Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia 61(2):399-412. https://doi.org/10.1007/s00125-017-4462-5 7. Watson N, Ding B, Zhu X, Frisina RD (2017) Chronic inflammation – inflammaging – in the ageing cochlea: A novel target for future presbycusis therapy. Ageing Res Rev 40:142-148. https://doi.org/10.1016/j.arr.2017.10.002 8. Mokotedi L, Michel FS, Mogane C, Gomes M, Woodiwiss AJ, Norton GR, Millen AME (2020) Associations of inflammatory markers with impaired left ventricular diastolic and systolic function in collagen-induced arthritis. Plos One 15(3):e230657. https://doi.org/10.1371/journal.pone.0230657 9. Kaur M, Singh M, Silakari O (2013) Inhibitors of switch kinase ’spleen tyrosine kinase’ in inflammation and immune-mediated disorders: a review. Eur J Med Chem 67:434-446. https://doi.org/10.1016/j.ejmech.2013.04.070 10. Tong W, Chen X, Song X, Chen Y, Jia R, Zou Y, Li L, Yin L, He C, Liang X, Ye G, Lv C, Lin J, Yin Z (2020) Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 19(3):1824-1834. https://doi.org/10.3892/etm.2019.8396 11. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396-405. https://doi.org/10.1016/j.bbadis.2009.12.009 12. Gasparini C, Feldmann M (2012) NF-kappaB as a target for modulating inflammatory responses. Curr Pharm Des 18(35):5735-5745. https://doi.org/10.2174/138161212803530763 13. Han JM, Lee EK, Gong SY, Sohng JK, Kang YJ, Jung HJ (2019) Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-kappaB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J Ethnopharmacol 231:10-18. https://doi.org/10.1016/j.jep.2018.11.003 14. Huang Y, Wang Y, Xu J, Feng J, He X (2020) Propacin, a coumarinolignoid isolated from durian, inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the MAPK and NF-κB pathways. Food Funct 11(1):596-605. https://doi.org/10.1039/C9FO02202C 15. Irfan A, Batool F, Zahra NS, Islam A, Osman SM, Nocentini A, Alissa SA, Supuran CT (2020) Benzothiazole derivatives as anticancer agents. J Enzyme Inhib Med Chem 35(1):265-279. https://doi.org/10.1080/14756366.2019.1698036 16. Osmaniye D, Levent S, Karaduman AB, Ilgin S, Ozkay Y, Kaplancikli ZA (2018) Synthesis of New Benzothiazole Acylhydrazones as Anticancer Agents. Molecules 23(5) https://doi.org/10.3390/molecules23051054 17. Pathak N, Rathi E, Kumar N, Kini SG, Rao CM (2020) A Review on Anticancer Potentials of Benzothiazole Derivatives. Mini Rev Med Chem 20(1):12-23. https://doi.org/10.2174/1389557519666190617153213 18. Kharbanda C, Alam MS, Hamid H, Javed K, Bano S, Dhulap A, Ali Y, Nazreen S, Haider S (2014) Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorg Med Chem 22(21):5804-5812. https://doi.org/10.1016/j.bmc.2014.09.028 19. Tariq S, Alam O, Amir M (2018) Synthesis, p38alpha MAP kinase inhibition, anti-inflammatory activity, and molecular docking studies of 1,2,4-triazole-based benzothiazole-2-amines. Arch Pharm (Weinheim) 351(3-4):e1700304. https://doi.org/10.1002/ardp.201700304 20. Tariq S, Kamboj P, Alam O, Amir M (2018) 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38alpha MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg Chem 81:630-641. https://doi.org/10.1016/j.bioorg.2018.09.015 21. Liu Y, Lai Y, Li H, Liu J, Luo XY, Li MH, Yang T, Wang YT, Yang SX, Li LM, Zou Q, Chen ZL (2015) A novel water-soluble benzothiazole derivative BD926 inhibits human activated T cell proliferation by down-regulating the STAT5 activation. Eur J Pharmacol 761:36-43. https://doi.org/10.1016/j.ejphar.2015.04.033 22. Liu Y, Yang T, Li H, Li MH, Liu J, Wang YT, Yang SX, Zheng J, Luo XY, Lai Y, Yang P, Li LM, Zou Q (2013) BD750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK3/STAT5 signalling pathway. Br J Pharmacol 168(3):632-643. https://doi.org/10.1111/j.1476-5381.2012.02172.x 23. Venugopala KN, Chandrashekharappa S, Pillay M, Bhandary S, Kandeel M, Mahomoodally FM, Morsy MA, Chopra D, Aldhubiab BE, Attimarad M, Alwassil OI, Harsha S, Mlisana K, Odhav B (2019) Synthesis and Structural Elucidation of Novel Benzothiazole Derivatives as Anti-tubercular Agents: In-silico Screening for Possible Target Identification. Med Chem 15(3):311-326. https://doi.org/10.2174/1573406414666180703121815 24. Gollapalli M, Taha M, Javid MT, Almandil NB, Rahim F, Wadood A, Mosaddik A, Ibrahim M, Alqahtani MA, Bamarouf YA (2019) Synthesis of benzothiazole derivatives as a potent alpha-glucosidase inhibitor. Bioorg Chem 85:33-48. https://doi.org/10.1016/j.bioorg.2018.12.021 25. Al-Tel TH, Al-Qawasmeh RA, Zaarour R (2011) Design, synthesis and in vitro antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem 46(5):1874-1881. https://doi.org/10.1016/j.ejmech.2011.02.051 26. Ugwu DI, Okoro UC, Ukoha PO, Gupta A, Okafor SN (2018) Novel anti-inflammatory and analgesic agents: synthesis, molecular docking and in vivo studies. J Enzyme Inhib Med Chem 33(1):405-415. https://doi.org/10.1080/14756366.2018.1426573 27. Azzam RA, Osman RR, Elgemeie GH (2020) Efficient Synthesis and Docking Studies of Novel Benzothiazole-Based Pyrimidinesulfonamide Scaffolds as New Antiviral Agents and Hsp90alpha Inhibitors. ACS Omega 5(3):1640-1655. https://doi.org/10.1021/acsomega.9b03706 28. Sarkar S, Siddiqui AA, Saha SJ, De R, Mazumder S, Banerjee C, Iqbal MS, Nag S, Adhikari S, Bandyopadhyay U (2016) Antimalarial Activity of Small-Molecule Benzothiazole Hydrazones. Antimicrob Agents Chemother 60(7):4217-4228. https://doi.org/10.1128/AAC.01575-15 29. Khokra SL, Arora K, Khan SA, Kaushik P, Saini R, Husain A (2019) Synthesis, Computational Studies and Anticonvulsant Activity of Novel Benzothiazole Coupled Sulfonamide Derivatives. Iran J Pharm Res 18(1):1-15. 30. Kamal A, Syed MAH, Mohammed SM (2014) Therapeutic potential of benzothiazoles: a patent review (2010 – 2014). Expert Opin Ther Pat 25(3):335-349. https://doi.org/10.1517/13543776.2014.999764 31. Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP (2013) Medicinal significance of benzothiazole scaffold: an insight view. J Enzyme Inhib Med Chem 28(2):240-266. https://doi.org/10.3109/14756366.2012.720572 32. Tariq S, Kamboj P, Amir M (2018) Therapeutic advancement of benzothiazole derivatives in the last decennial period. Arch Pharm:1800170. https://doi.org/10.1002/ardp.201800170 33. Ishimura N, Bronk SF, Gores GJ (2004) Inducible nitric oxide synthase upregulates cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J Physiol Gastrointest Liver Physiol 287(1):G88-G95. https://doi.org/10.1152/ajpgi.00539.2003 34. Lee HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS, Hwang DY (2017) Butanol extracts of Asparagus cochinchinensis fermented with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp Ther Med 14(5):4986-4994. https://doi.org/10.3892/etm.2017.5200 35. Wang B, Li M, Gao H, Sun X, Gao B, Zhang Y, Yu L (2020) Chemical composition of tetraploidGynostemma pentaphyllum gypenosides and their suppression on inflammatory response by NF‐κB/MAPKs/AP‐1 signaling pathways. Food Sci Nutr 8(2):1197-1207. https://doi.org/10.1002/fsn3.1407 36. Yang YJ, Yi L, Wang Q, Xie BB, Dong Y, Sha CW (2017) Anti-inflammatory effects of physalin E from Physalis angulata on lipopolysaccharide-stimulated RAW 264.7 cells through inhibition of NF-kappaB pathway. Immunopharmacol Immunotoxicol 39(2):74-79. https://doi.org/10.1080/08923973.2017.1282514 37. Noort AR, van Zoest KP, Weijers EM, Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO, Tak PP, Tas SW (2014) NF-kappaB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol 234(3):375-385. https://doi.org/10.1002/path.4403 38. Li H, Yoon J, Won H, Ji H, Yuk HJ, Park KH, Park H, Jeong T (2017) Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol 45:110-119. https://doi.org/10.1016/j.intimp.2017.01.033 39. Son ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS (2020) Antiinflammatory activity of 3,5,6,7,3’,4’hexamethoxyflavone via repression of the NFkappaB and MAPK signaling pathways in LPSstimulated RAW264.7 cells. Mol Med Rep 22(3):1985-1993. https://doi.org/10.3892/mmr.2020.11252 40. Hwang YH, Kim MS, Song IB, Lim JH, Park BK, Yun HI (2009) Anti-inflammatory effects of talosin A via inhibition of NF-kappaB activation in lipopolysaccharide-stimulated RAW264.7 cells. Biotechnol Lett 31(6):789-795. https://doi.org/10.1007/s10529-009-9943-2 41. Sarnpitak P, Mujumdar P, Morisseau C, Hwang SH, Hammock B, Iurchenko V, Zozulya S, Gavalas A, Geronikaki A, Ivanenkov Y, Krasavin M (2014) Potent, orally available, selective COX-2 inhibitors based on 2-imidazoline core. Eur J Med Chem 84:160-172. https://doi.org/10.1016/j.ejmech.2014.07.023 42. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P (1994) Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A 91(25):12013-12017. https://doi.org/10.1073/pnas.91.25.12013 43. Sampaio AL, Dalli J, Brancaleone V, D’Acquisto F, Perretti M, Wheatley C (2013) Biphasic modulation of NOS expression, protein and nitrite products by hydroxocobalamin underlies its protective effect in endotoxemic shock: downstream regulation of COX-2, IL-1beta, TNF-alpha, IL-6, and HMGB1 expression. Mediators Inflamm 2013:741804. https://doi.org/10.1155/2013/741804 44. Ren J, Li L, Wang Y, Zhai J, Chen G, Hu K (2019) Gambogic acid induces heme oxygenase-1 through Nrf2 signaling pathway and inhibits NF-kappaB and MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells. Biomed Pharmacother 109:555-562. https://doi.org/10.1016/j.biopha.2018.10.112 45. Satoh T, Otsuka A, Contassot E, French LE (2015) The inflammasome and IL-1beta: implications for the treatment of inflammatory diseases. Immunotherapy-Uk 7(3):243-254. https://doi.org/10.2217/imt.14.106 46. Lu ZB, Ou JY, Cao HH, Liu JS, Yu LZ (2020) Heat-Clearing Chinese Medicines in Lipopolysaccharide-Induced Inflammation. Chin J Integr Med 26(7):552-559. https://doi.org/10.1007/s11655-020-3256-7 47. Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679-692. https://doi.org/10.1038/nri3495