1.
Xiang
N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, Lin X, Zhang J (2016) Abrogating
ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB
Pathway. Sci Rep-Uk 6:27583. https://doi.org/10.1038/srep27583
2.
Baatar
D, Siddiqi MZ, Im WT, Ul KN, Hwang SG (2018) Anti-Inflammatory Effect of
Ginsenoside Rh2-Mix on Lipopolysaccharide-Stimulated RAW 264.7 Murine
Macrophage Cells. J Med Food 21(10):951-960.
https://doi.org/10.1089/jmf.2018.4180
3.
Williams
B, Lees F, Tsangari H, Hutchinson MR, Perilli E, Crotti TN (2020)
Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and
Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model.
Mediators Inflamm 2020:6245798. https://doi.org/10.1155/2020/6245798
4.
Maiuri
AR, Li H, Stein BD, Tennessen JM, O’Hagan HM (2018) Inflammation-induced
DNA methylation of DNA polymerase gamma alters the metabolic profile of
colon tumors. Cancer Metab 6:9.
https://doi.org/10.1186/s40170-018-0182-7
5.
Zheng
Q, Wang Y, Liu Q, Dong X, Xie Z, Liu X, Gao W, Bai X, Li Z (2020) FK866
attenuates sepsis-induced acute lung injury through c-jun-N-terminal
kinase (JNK)-dependent autophagy. Life Sci 250:117551.
https://doi.org/10.1016/j.lfs.2020.117551
6.
Szpigel
A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C,
Ktorza A, Gautier JF, Ferre P, Bourron O, Foufelle F (2018) Lipid
environment induces ER stress, TXNIP expression and inflammation in
immune cells of individuals with type 2 diabetes. Diabetologia
61(2):399-412. https://doi.org/10.1007/s00125-017-4462-5
7.
Watson
N, Ding B, Zhu X, Frisina RD (2017) Chronic inflammation – inflammaging
– in the ageing cochlea: A novel target for future presbycusis therapy.
Ageing Res Rev 40:142-148. https://doi.org/10.1016/j.arr.2017.10.002
8.
Mokotedi
L, Michel FS, Mogane C, Gomes M, Woodiwiss AJ, Norton GR, Millen AME
(2020) Associations of inflammatory markers with impaired left
ventricular diastolic and systolic function in collagen-induced
arthritis. Plos One 15(3):e230657.
https://doi.org/10.1371/journal.pone.0230657
9.
Kaur
M, Singh M, Silakari O (2013) Inhibitors of switch kinase ’spleen
tyrosine kinase’ in inflammation and immune-mediated disorders: a
review. Eur J Med Chem 67:434-446.
https://doi.org/10.1016/j.ejmech.2013.04.070
10.
Tong
W, Chen X, Song X, Chen Y, Jia R, Zou Y, Li L, Yin L, He C, Liang X, Ye
G, Lv C, Lin J, Yin Z (2020) Resveratrol inhibits LPS-induced
inflammation through suppressing the signaling cascades of
TLR4-NF-κB/MAPKs/IRF3. Exp Ther Med 19(3):1824-1834.
https://doi.org/10.3892/etm.2019.8396
11.
Kim
EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in
human diseases. Biochim Biophys Acta 1802(4):396-405.
https://doi.org/10.1016/j.bbadis.2009.12.009
12.
Gasparini
C, Feldmann M (2012) NF-kappaB as a target for modulating inflammatory
responses. Curr Pharm Des 18(35):5735-5745.
https://doi.org/10.2174/138161212803530763
13.
Han
JM, Lee EK, Gong SY, Sohng JK, Kang YJ, Jung HJ (2019) Sparassis crispa
exerts anti-inflammatory activity via suppression of TLR-mediated
NF-kappaB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage
cells. J Ethnopharmacol 231:10-18.
https://doi.org/10.1016/j.jep.2018.11.003
14.
Huang
Y, Wang Y, Xu J, Feng J, He X (2020) Propacin, a coumarinolignoid
isolated from durian, inhibits the lipopolysaccharide-induced
inflammatory response in macrophages through the MAPK and NF-κB
pathways. Food Funct 11(1):596-605. https://doi.org/10.1039/C9FO02202C
15.
Irfan
A, Batool F, Zahra NS, Islam A, Osman SM, Nocentini A, Alissa SA,
Supuran CT (2020) Benzothiazole derivatives as anticancer agents. J
Enzyme Inhib Med Chem 35(1):265-279.
https://doi.org/10.1080/14756366.2019.1698036
16.
Osmaniye
D, Levent S, Karaduman AB, Ilgin S, Ozkay Y, Kaplancikli ZA (2018)
Synthesis of New Benzothiazole Acylhydrazones as Anticancer Agents.
Molecules 23(5) https://doi.org/10.3390/molecules23051054
17.
Pathak
N, Rathi E, Kumar N, Kini SG, Rao CM (2020) A Review on Anticancer
Potentials of Benzothiazole Derivatives. Mini Rev Med Chem 20(1):12-23.
https://doi.org/10.2174/1389557519666190617153213
18.
Kharbanda
C, Alam MS, Hamid H, Javed K, Bano S, Dhulap A, Ali Y, Nazreen S, Haider
S (2014) Synthesis and evaluation of pyrazolines bearing benzothiazole
as anti-inflammatory agents. Bioorg Med Chem 22(21):5804-5812.
https://doi.org/10.1016/j.bmc.2014.09.028
19.
Tariq
S, Alam O, Amir M (2018) Synthesis, p38alpha MAP kinase inhibition,
anti-inflammatory activity, and molecular docking studies of
1,2,4-triazole-based benzothiazole-2-amines. Arch Pharm (Weinheim)
351(3-4):e1700304. https://doi.org/10.1002/ardp.201700304
20.
Tariq
S, Kamboj P, Alam O, Amir M (2018) 1,2,4-Triazole-based
benzothiazole/benzoxazole derivatives: Design, synthesis, p38alpha MAP
kinase inhibition, anti-inflammatory activity and molecular docking
studies. Bioorg Chem 81:630-641.
https://doi.org/10.1016/j.bioorg.2018.09.015
21.
Liu Y,
Lai Y, Li H, Liu J, Luo XY, Li MH, Yang T, Wang YT, Yang SX, Li LM, Zou
Q, Chen ZL (2015) A novel water-soluble benzothiazole derivative BD926
inhibits human activated T cell proliferation by down-regulating the
STAT5 activation. Eur J Pharmacol 761:36-43.
https://doi.org/10.1016/j.ejphar.2015.04.033
22.
Liu Y,
Yang T, Li H, Li MH, Liu J, Wang YT, Yang SX, Zheng J, Luo XY, Lai Y,
Yang P, Li LM, Zou Q (2013) BD750, a benzothiazole derivative, inhibits
T cell proliferation by affecting the JAK3/STAT5 signalling pathway. Br
J Pharmacol 168(3):632-643.
https://doi.org/10.1111/j.1476-5381.2012.02172.x
23.
Venugopala
KN, Chandrashekharappa S, Pillay M, Bhandary S, Kandeel M, Mahomoodally
FM, Morsy MA, Chopra D, Aldhubiab BE, Attimarad M, Alwassil OI, Harsha
S, Mlisana K, Odhav B (2019) Synthesis and Structural Elucidation of
Novel Benzothiazole Derivatives as Anti-tubercular Agents: In-silico
Screening for Possible Target Identification. Med Chem 15(3):311-326.
https://doi.org/10.2174/1573406414666180703121815
24.
Gollapalli
M, Taha M, Javid MT, Almandil NB, Rahim F, Wadood A, Mosaddik A, Ibrahim
M, Alqahtani MA, Bamarouf YA (2019) Synthesis of benzothiazole
derivatives as a potent alpha-glucosidase inhibitor. Bioorg Chem
85:33-48. https://doi.org/10.1016/j.bioorg.2018.12.021
25.
Al-Tel
TH, Al-Qawasmeh RA, Zaarour R (2011) Design, synthesis and in vitro
antimicrobial evaluation of novel Imidazo[1,2-a]pyridine and
imidazo[2,1-b][1,3]benzothiazole motifs. Eur J Med Chem
46(5):1874-1881. https://doi.org/10.1016/j.ejmech.2011.02.051
26.
Ugwu
DI, Okoro UC, Ukoha PO, Gupta A, Okafor SN (2018) Novel
anti-inflammatory and analgesic agents: synthesis, molecular docking and
in vivo studies. J Enzyme Inhib Med Chem 33(1):405-415.
https://doi.org/10.1080/14756366.2018.1426573
27.
Azzam
RA, Osman RR, Elgemeie GH (2020) Efficient Synthesis and Docking Studies
of Novel Benzothiazole-Based Pyrimidinesulfonamide Scaffolds as New
Antiviral Agents and Hsp90alpha Inhibitors. ACS Omega 5(3):1640-1655.
https://doi.org/10.1021/acsomega.9b03706
28.
Sarkar
S, Siddiqui AA, Saha SJ, De R, Mazumder S, Banerjee C, Iqbal MS, Nag S,
Adhikari S, Bandyopadhyay U (2016) Antimalarial Activity of
Small-Molecule Benzothiazole Hydrazones. Antimicrob Agents Chemother
60(7):4217-4228. https://doi.org/10.1128/AAC.01575-15
29.
Khokra
SL, Arora K, Khan SA, Kaushik P, Saini R, Husain A (2019) Synthesis,
Computational Studies and Anticonvulsant Activity of Novel Benzothiazole
Coupled Sulfonamide Derivatives. Iran J Pharm Res 18(1):1-15.
30.
Kamal
A, Syed MAH, Mohammed SM (2014) Therapeutic potential of benzothiazoles:
a patent review (2010 – 2014). Expert Opin Ther Pat 25(3):335-349.
https://doi.org/10.1517/13543776.2014.999764
31.
Sharma
PC, Sinhmar A, Sharma A, Rajak H, Pathak DP (2013) Medicinal
significance of benzothiazole scaffold: an insight view. J Enzyme Inhib
Med Chem 28(2):240-266. https://doi.org/10.3109/14756366.2012.720572
32.
Tariq
S, Kamboj P, Amir M (2018) Therapeutic advancement of benzothiazole
derivatives in the last decennial period. Arch Pharm:1800170.
https://doi.org/10.1002/ardp.201800170
33.
Ishimura
N, Bronk SF, Gores GJ (2004) Inducible nitric oxide synthase upregulates
cyclooxygenase-2 in mouse cholangiocytes promoting cell growth. Am J
Physiol Gastrointest Liver Physiol 287(1):G88-G95.
https://doi.org/10.1152/ajpgi.00539.2003
34.
Lee
HA, Song BR, Kim HR, Kim JE, Yun WB, Park JJ, Lee ML, Choi JY, Lee HS,
Hwang DY (2017) Butanol extracts of Asparagus cochinchinensis fermented
with Weissella cibaria inhibit iNOS-mediated COX-2 induction pathway and
inflammatory cytokines in LPS-stimulated RAW264.7 macrophage cells. Exp
Ther Med 14(5):4986-4994. https://doi.org/10.3892/etm.2017.5200
35.
Wang
B, Li M, Gao H, Sun X, Gao B, Zhang Y, Yu L (2020) Chemical composition
of tetraploidGynostemma pentaphyllum gypenosides and their suppression
on inflammatory response by NF‐κB/MAPKs/AP‐1 signaling pathways. Food
Sci Nutr 8(2):1197-1207. https://doi.org/10.1002/fsn3.1407
36.
Yang
YJ, Yi L, Wang Q, Xie BB, Dong Y, Sha CW (2017) Anti-inflammatory
effects of physalin E from Physalis angulata on
lipopolysaccharide-stimulated RAW 264.7 cells through inhibition of
NF-kappaB pathway. Immunopharmacol Immunotoxicol 39(2):74-79.
https://doi.org/10.1080/08923973.2017.1282514
37.
Noort
AR, van Zoest KP, Weijers EM, Koolwijk P, Maracle CX, Novack DV,
Siemerink MJ, Schlingemann RO, Tak PP, Tas SW (2014) NF-kappaB-inducing
kinase is a key regulator of inflammation-induced and tumour-associated
angiogenesis. J Pathol 234(3):375-385. https://doi.org/10.1002/path.4403
38. Li
H, Yoon J, Won H, Ji H, Yuk HJ, Park KH, Park H, Jeong T (2017)
Isotrifoliol inhibits pro-inflammatory mediators by suppression of
TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int
Immunopharmacol 45:110-119. https://doi.org/10.1016/j.intimp.2017.01.033
39.
Son
ES, Park JW, Kim SH, Park HR, Han W, Kwon OC, Nam JY, Jeong SH, Lee CS
(2020) Antiinflammatory activity of 3,5,6,7,3’,4’hexamethoxyflavone via
repression of the NFkappaB and MAPK signaling pathways in LPSstimulated
RAW264.7 cells. Mol Med Rep 22(3):1985-1993.
https://doi.org/10.3892/mmr.2020.11252
40.
Hwang
YH, Kim MS, Song IB, Lim JH, Park BK, Yun HI (2009) Anti-inflammatory
effects of talosin A via inhibition of NF-kappaB activation in
lipopolysaccharide-stimulated RAW264.7 cells. Biotechnol Lett
31(6):789-795. https://doi.org/10.1007/s10529-009-9943-2
41.
Sarnpitak
P, Mujumdar P, Morisseau C, Hwang SH, Hammock B, Iurchenko V, Zozulya S,
Gavalas A, Geronikaki A, Ivanenkov Y, Krasavin M (2014) Potent, orally
available, selective COX-2 inhibitors based on 2-imidazoline core. Eur J
Med Chem 84:160-172. https://doi.org/10.1016/j.ejmech.2014.07.023
42.
Seibert
K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P
(1994) Pharmacological and biochemical demonstration of the role of
cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A
91(25):12013-12017. https://doi.org/10.1073/pnas.91.25.12013
43.
Sampaio
AL, Dalli J, Brancaleone V, D’Acquisto F, Perretti M, Wheatley C (2013)
Biphasic modulation of NOS expression, protein and nitrite products by
hydroxocobalamin underlies its protective effect in endotoxemic shock:
downstream regulation of COX-2, IL-1beta, TNF-alpha, IL-6, and HMGB1
expression. Mediators Inflamm 2013:741804.
https://doi.org/10.1155/2013/741804
44.
Ren J,
Li L, Wang Y, Zhai J, Chen G, Hu K (2019) Gambogic acid induces heme
oxygenase-1 through Nrf2 signaling pathway and inhibits NF-kappaB and
MAPK activation to reduce inflammation in LPS-activated RAW264.7 cells.
Biomed Pharmacother 109:555-562.
https://doi.org/10.1016/j.biopha.2018.10.112
45.
Satoh
T, Otsuka A, Contassot E, French LE (2015) The inflammasome and
IL-1beta: implications for the treatment of inflammatory diseases.
Immunotherapy-Uk 7(3):243-254. https://doi.org/10.2217/imt.14.106
46. Lu
ZB, Ou JY, Cao HH, Liu JS, Yu LZ (2020) Heat-Clearing Chinese Medicines
in Lipopolysaccharide-Induced Inflammation. Chin J Integr Med
26(7):552-559. https://doi.org/10.1007/s11655-020-3256-7
47.
Arthur
JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity.
Nat Rev Immunol 13(9):679-692. https://doi.org/10.1038/nri3495