REFERENCE
Afonso, C.L, Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu,
Z., Balinsky, C. A, Gibb, T. R, Bean, T. J, Zsak, L., & Rock, D. L.
(2004). African swine fever virus multigene family 360 and 530 genes
affect host interferon response. Journal of Virology. 78:1858-64.
Afonso, C.L., Zsak, L., Carrillo, C., Borca, M.V., & Rock, D.L.
(1998b). African swine fever virus NL gene is not required for virus
virulence. J. Gen. Virol. 79 (Pt 10), 2543–2547.
Alcami, A., Angulo, A., Lopezotin, C., Munoz, M., Freije, J.M.P.,
Carrascosa, A.L., & Vinuela, E. (1992). Amino-acid-Sequence and
structural-properties of Protein-P12, an African swine fever virus
attachment protein. J. Virol. 66 (6), 3860–3868.
Alcami, A., Carrascosa, A.L., &
Vinuela, E. (1989). Saturable binding sites mediate the entry of African
swine fever virus into vero cells. Virology. 168, 393–398.
[CrossRef]
Alejo, A., Matamoros, T., Guerra, M., & Andres, G. (2018). A proteomic
atlas of the African swine fever virus particle. J. Virol. 92 (23).
Banjara, S., Caria, S., Dixon, L.K., Hinds, M.G., & Kvansakul, M.
(2017). Structural insight into African swine fever virus A179L-mediated
inhibition of apoptosis. J. Virol. 91 (6).
Bastos, A.D.S., Penrith, M.L., Cruciere, C., Edrich, J.L., Hutchings,
G., Roger, F., Couacy- Hymann, E., & Thomson, G.R. (2003). Genotyping
field strains of African swine fever virus by partial p72 gene
characterisation. Arch. Virol. 148 (4), 693–706.
Boinas, F.S., Hutchings, G.H., Dixon, L.K., & Wilkinson, P.J. (2004).
Characterization of pathogenic and non-pathogenic African swine fever
virus isolates from Ornithodoros erraticus inhabiting pig premises in
Portugal. J. Gen. Virol. 85, 2177–2187.
Borca, M.V., Carrillo, C., Zsak,
L., Laegreid, W.W., Kutish. G.F., Neilan, J.G., Burrage, T.G., & Rock,
D.L. (1998). 274 Deletion of a CD2-like gene, 8-DR, from African swine
fever virus affects viral infection in domestic 275 swine. Journal of
Virology. 72:2881-9.
Borca, M.V., O’Donnell, V., Holinka, L.G., Ramirez-Medina, E., Clark,
B.A., Vuono, E.A., Berggren, K., Alfano, M., Carey, L.B., Richt, J.A.,
Risatti, G.R., & Gladue, D.P. (2018). The L83L ORF of African swine
fever virus strain Georgia encodes for a nonessential gene that
interacts with the host protein IL-1 beta. Virus Res. 249, 116–123.
Brun, A., Rivas, C., Esteban, M., Escribano, J.M., & Alonso, C. (1996).
African swine fever virus gene A179L, a viral homologue of bcl- 2,
protects cells from programmed cell death. Virology 225 (1), 227–230.
Correia, S., Ventura, S., & Parkhouse, R.M. (2013). Identification and
utility of innate immune system evasion mechanisms of ASFV. Virus Res.
173 (1), 87–100.
Costard, S., Wieland, B., de Glanville W., Jori, F., Rowlands, R.,
Vosloo, W., Roger, F., Pfeiffer, D.U., & Dixon, L. K. (2009). African
swine fever: how can global spread be prevented? Philosophical
Transactions of the Royal Society B-Biological Sciences. 364:2683-96.
Cuesta-Geijo, M.A., Chiappi, M., Galindo, I., Barrado-Gil, L.,
Munoz-Moreno, R., Carrascosa, J.L., & Alonso, C. (2015). Cholesterol
flux is required for endosomal progression of african swine fever
virions during the initial establishment of infection. J. Virol. 90,
1534–1543. [CrossRef] [PubMed]
Cuesta-Geijo, M.A., Galindo, I., Hernaez, B., Quetglas, J.I.,
Dalmau-Mena, I., & Alonso, C. (2012) Endosomal maturation, Rab7 GTPase
and phosphoinositides in African swine fever virus entry. PLoS
ONE. 7, e48853. [CrossRef] [PubMed]
de Oliveira, V.L., Almeida, S.C.P., Soares, H.R., Crespo, A.,
Marshall-Clarke, S., & Parkhouse, R.M.E. (2011). A novel TLR3 inhibitor
encoded by African swine fever virus (ASFV). Arch. Virol. 156 (4),
597–609.
Dixon, L.K., Ana, L.R., Netherton,
C., & Linda K. (2016). Unravelling the armour of a killer: E 1 vasion
of host defence’s by African swine fever virus Journal of Virology.
doi:10.1128/JVI.02338-16
Dixon, L.K., Abrams, C.C., Chapman, D.G., & Zhang, F. (2008). African
swine fever virus. In: Animal Viruses: Molecular Biology, pp. 457–521.
Dixon, L.K., Escribano, J.M., Martins, C., Rock, D.L., Salas, M.L., &
Wilkinson, P.J. (2005). Asfarviridae. In: Fauquet, C.M., Mayo, M.A.,
Maniloff, J., Desselberger, U., Ball, L.A. (Eds.), Virus Taxonomy,
VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp.
135–143.
Dixon, L.K., Islam, M., Nash, R.,
& Reis, A.L. (2019). African swine fever virus evasion of host defences
Virus Research 266 25–33 https://doi.org/10.1016/j.virusres.2019.04.002
journal homepage: www.elsevier.com/locate/virusres
Galindo, I., Hernaez, B., Diaz-Gil, G., Escribano, J.M., & Alonso, C.
(2008). A 179L, a viral Bcl-2 homologue, targets the core Bcl-2
apoptotic machinery and its upstream BH3 activators with selective
binding restrictions for Bid and Noxa. Virology 375 (2), 561–572.
Gallardo, C., Soler, A., Nieto, R., Sanchez, M.A., Martins, C., &
Pelayo, V. (2015). Experimental Transmission of African Swine Fever
(ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transbound
Emerg Dis 62(6), 612-622. doi:10.1111/tbed.12431.
Goatley, L.C., & Dixon, L.K. (2011). Processing and localization of the
african swine fever virus CD2v transmembrane protein. J. Virol. 85 (7),
3294–3305.
Golding, J.P., Goatley, L.,
Goodbourn, S., Dixon, L.K., Taylor, G., & Netherton, C.L. (2016).
Sensitivity of African swine fever virus to type I interferon is linked
to genes within multigene families 360 and 505. Virology. 493:154-1.
Gomez-Puertas, P., Rodriguez, F., Oviedo, J.M., Brun, A., Alonso, C., &
Escribano, J.M. (1998). The African swine fever virus proteins p54 and
p30 are involved in two distinct steps of virus attachment and both
contribute to the antibody-mediated protective immune response. Virology
243 (2), 461–471.
GomezPuertas, P., Rodriguez, F., Oviedo, J.M., RamiroIbanez, F.,
RuizGonzalvo, F., Alonso, C., & Escribano, J.M. (1996). Neutralizing
antibodies to different proteins of African swine fever virus inhibit
both virus attachment and internalization. J. Virol. 70 (8), 5689–5694.
Granja, A.G., Sabina, P., Salas, M.L., Fresno, M., & Revilla, Y.
(2006). Regulation of inducible nitric oxide synthase expression by
viral A238L-mediated inhibition of p65/RelA acetylation and p300
transactivation. Journal of Virology. 80:10487-96.
Granja, A.G., Nogal, M.L., Hurtado, C., del Aguila, C., Carrascosa,
A.L., Salas, M.L., Fresno, M., & Revilla, Y. (2006). The viral protein
A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional
coactivators pathway. J. Immunol. 176 (1), 451–462.
Granja, A.G., Nogal, M.L., Hurtado, C., Salas, J., Salas, M.L.,
Carrascosa, A.L., & Revilla, Y. (2004a). Modulation of p53 cellular
function and cell death by African swine fever virus. J. Virol. 78 (13),
7165–7174.
Granja, A.G., Nogal, M.L., Hurtado, C., Vila, V., Carrascosa, A.L.,
Salas, M.L., Fresno, M., & Revilla, Y. (2004b). The viral protein A238L
inhibits cyclooxygenase-2 expression through a nuclear factor of
activated T cell-dependent transactivation pathway. J. Biol. Chem. 279
(51), 53736–53746.
Granja, A.G., Perkins, N.D., & Revilla, Y. (2008). A238L inhibits
NF-ATc2, NF-kappa B, and c- Jun activation through a novel mechanism
involving protein kinase C-theta-mediated up-regulation of the amino-
terminal transactivation domain of p300. J. Immunol. 180 (4),
2429–2442.
Haig, D.M. (2001). Subversion and piracy: DNA viruses and immune
evasion. Res. Vet. Sci.70 (3):205–219. [PubMed] [Google
Scholar]
Hernaez, B., & Alonso, C. (2010). Dynamin- and clathrin-dependent
endocytosis in African swine fever virus entry. J. Virol. 84 (4),
2100–2109.
Hernaez, B., Cabezas, M., Munoz-Moreno, R., Galindo, I., Cuesta-Geijo,
M.A., & Alonso, C. (2013). A179L, a new viral Bcl2 homolog targeting
beclin 1 autophagy related protein. Curr. Mol. Med. 13 (2), 305–316.
Hernaez, B., Guerra, M., Salas, M.L., & Andres, G. (2016). African
swine fever virus undergoes outer envelope disruption, capsid
disassembly and inner envelope fusion before core release from
multivesicular endosomes. PLoS Pathog. 12 (4).
Hurtado, C., Granja, A.G., Bustos,
M.J., Nogal, M.L., de Buitrago, G.G., de Yebenes, V.G., Salas, M. L.,
Revilla, Y., & Carrascosa, A. L. (2004). The C-type lectin homologue
gene (EP153R) of African swine fever virus inhibits apoptosis both in
virus infection and in heterologous expression. Virology. 326:160-70.
Inmaculada, G., & Alonso, C.
(2017). African Swine Fever Virus: A Review. Viruses, 9, 103;
doi:10.3390/v9050103 www.mdpi.com/journal/viruses
Iyer, L.A., Balaji, S., Koonin, E.V., & Aravind, L. (2006).
Evolutionary genomics of nucleocytoplasmic large DNA viruses. Virus
Research 117 (1), 156–184.
Janeway, C.A., & Medzhitov, R. (2002). Innate immune
recognition. Annu. Rev. Immunol.20:197–216. [PubMed] [Google
Scholar]
Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in
pathogen recognition. Int. Immunol. 21 (4), 317–337.
Kay-Jackson, P.C., Goatley, L.C., Cox, L., Miskin, J.E., Parkhouse,
R.M.E., Wienands, J., & Dixon, L.K. (2004). The CD2v protein of African
swine fever virus interacts with the actin-binding adaptor protein
SH3P7. J. Gen. Virol. 85, 119–130.
Kuznar, J., Salas, M.L., & Vinuela, E. (1980b). RNAs synthesized
invitro by purified African swine fever virus. Archivos de Biologia y
Medicina Experimentales 13 (4), 465.
Kvansakul, M., Caria, S., & Hinds, M.G. (2017). The Bcl-2 family in
host-virus interactions. Viruses-Basel 9 (10).
Lang, K.S., Burow, A., & Kurrer, M. (2007). The role of the innate
immune response in autoimmune disease. Journal Autoimmunity 29:206–12.
Leitao, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E.,
Portugal, F.C., Vigario, J.D., & Martins, C.L.V. (2001). The
non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides
a model for defining the protective anti- virus immune response. J. Gen.
Virol. 82, 513–523.
McCullough, K.C., Basta, S., Knotig, S., Gerber, H., Schaffner, R., Kim,
Y.B., & Saalmuller, A. (1999). Intermediate stages in
monocyte-macrophage differentiation modulate phenotype and
susceptibility to virus infection. Immunology 98 (2), 203–212.
Miskin, J.E., Abrams, C.C., & Dixon, L.K. (2000). African swine fever
virus protein A238L interacts with the cellular phosphatase calcineurin
via a binding domain similar to that of NFAT. J. Virol. 74 (20),
9412–9420.
Miskin, J.E., Abrams, C.C., Goatley, L.C., & Dixon, L.K. (1998). A
viral mechanism for inhibition of the cellular phosphatase calcineurin.
Science 281 (5376), 562–565.
Mogensen, T.H. (2009). Pathogen recognition and inflammatory signaling
in innate immune defenses. Clin. Microbiol. Rev. 22 (2), 240–273 Table
of Contents.
Monteagudo, P.L., Lacasta, A., Lopez, E., Bosch, L., Collado, J.,
Pina-Pedrero, S., Correa- Fiz, F., Accensi, F., Navas, M.J., Vidal, E.,
Bustos, M.J., Rodriguez, J.M., Gallei, A., Nikolin, V., Salas, M.L., &
Rodriguez, F. (2017). BA71 Delta cd2: a new recombinant live attenuated
african swine fever virus with cross-protective capabilities. J. Virol.
91 (21).
Mosser, D.M., & Edwards, J.P. (2008). Exploring the full spectrum of
macrophage activation. Nat. Rev. Immunol. 8 (12), 958–969.
Munoz-Moreno, R., Cuesta-Geijo, M.A., Martinez-Romero, C., Barrado-Gil,
L., Galindo, I,. Garcia-Sastre, A., & Alonso, C. (2016). Antiviral Role
of IFITM Proteins in African Swine Fever Virus Infection. Plos One.
2016;11.
Neilan, J.G., Lu, Z., Kutish, G.F., Zsak, L., Burrage, T.G., Borca,
M.V., Carrillo, C., & Rock, D.L. (1997a). A BIR motif containing gene
of African swine fever virus, 4CL, is nonessential for growth in vitro
and viral virulence. Virology 230 (2), 252–264.
Netherton, C.L., Simpson, J., Haller, O., Wileman, T.E., Takamatsu,
H.H., Monaghan, P., & Taylor, G. (2009). Inhibition of a Large
Double-Stranded DNA Virus by MxA Protein. Journal of Virology.
83:2310-20.
Nogal, M.L., de Buitrago, G.G., Rodriguez, C., Cubelos, B., Carrascosa,
A.L., Salas, M.L., & Revilla, Y. (2001). African swine fever virus IAP
homologue inhibits caspase activation and promotes cell survival in
mammalian cells. J. Virol. 75 (6), 2535–2543.
O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu,
X., Arzt, J., Reese, B., Carrillo, C., Risatti, Guillermo, R., & Borca,
M.V. (2015). African Swine Fever Virus Georgia Isolate Harboring
Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers
Protection against Challenge with Virulent Parental Virus. Journal of
Virology. 89:6048-56.
Perez-Nunez, D., Garcia-Urdiales, E., Martinez-Bonet, M., Nogal, M.L.,
Barroso, S., Revilla, Y., & Madrid, R. (2015). CD2v interacts with
adaptor protein AP-1 during african swine fever infection. PLoS One 10
(4).
Popescu, L., Gaudreault, N.N., Whitworth, M. K., Murgia, V. M.,
Nietfeld, C. J., Mileham, A., Samuel, M., Prather, S. R., & Rowland
R.R. (2017). Genetically edited pigs lacking CD163 show no resistance
following infection with the African Swine Fever Virus isolate, Georgia
2007/1. journal homepage: www.elsevier.com/locate/virusres DOI:
10.1016/j.virol.2016.11.012
Powell, P.P., Dixon, L.K., & Parkhouse, R.M.E. (1996). An I kappa B
homolog encoded by African swine fever virus provides a novel mechanism
for downregulation of proinflammatory cytokine responses in host
macrophages. J. Virol. 70 (12), 8527–8533.
Redrejo-Rodriguez, M., & Salas, M.L. (2014). Repair of base damage and
genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus
Res. 179, 12–25.
Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G.,
Sanchez-Cordon, P., & Dixon, L.K. (2016). Deletion of African swine
fever virus interferon inhibitors from the genome of a virulent isolate
reduces virulence in domestic pigs and induces a protective response.
Vaccine. 34:4698-705.
Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton,
C.L., Chapman, D.A.G., & Dixon, L.K. (2017). Deletion of the african
swine fever virus gene DP148R does not reduce virus replication in
culture but reduces virus virulence in pigs and induces high levels of
protection against challenge. J. Virol. 91 (24).
Revilla, Y., Cebrian, A., Baixeras, E., Martinez, C., Vinuela, E., &
Salas, M.L. (1997). Inhibition of apoptosis by the African swine fever
virus bcl-2 homologue: role of the BH1 domain. Virology 228 (2),
400–404.
Rivera, J., Abrams, C., Hernaez, B., Alcazar, A., Escribano, J.M.,
Dixon, L., & Alonso, C. (2007). The MyD116 African swine fever virus
homologue interacts with the catalytic subunit of protein phosphatase 1
and activates its phosphatase activity. J. Virol. 81 (6), 2923–2929.
Rodriguez, C.I., Nogal, M.L., Carrascosa, A.L., Salas, M.L., Fresno, M.,
& Revilla, Y. (2002). African swine fever virus IAP-like protein
induces the activation of nuclear factor kappa B. J. Virol. 76 (8),
3936–3942.
Rodriguez, J.M., Yanez, R.J., Almazan, F., Vinuela, E., & Rodriguez,
J.F. (1993). African swine fever virus encodes a Cd2 homolog responsible
for the adhesion of erythrocytes to infected-cells. J. Virol. 67 (9),
5312–5320.
Rowlands, R.J., Duarte, M.M.,
Boinas, F., Hutchings, G., & Dixon, L.K. (2009). The CD2v protein
enhances African swine fever virus replication in the tick vector,
Ornithodoros erraticus. Virology. 393:319-28.
Rowlands, R.J., Duarte, M.M., Boinas, F., Hutchings, G., & Dixon, L.K.
(2009). The CD2v protein enhances African swine fever virus replication
in the tick vector, Ornithodoros erraticus. Virology 393 (2), 319–328.
Salas, M.L., Kuznar, J., & Vinuela, E. (1983). RNA synthesis by African
swine fever (ASF) virus. African Swine Fever, Commission of the European
Communities, Report EUR 8466 EN, pages 235–239.
Salguero, F.J., Gil, S., Revilla, Y., Gallardo, C., Arias, M., &
Martins, C. (2008). Cytokine mRNA expression and pathological findings
in pigs inoculated with African swine fever virus (E-70) deleted on
A238L. Vet. Immunol. Immunopathol. 124 (1-2), 107–119.
Sanchez, E.G., Quintas, A., Perez-Nunez, D., Nogal, M., Barroso, S.,
Carrascosa, A.L., & Revilla, Y. (2012). African swine fever virus uses
macropinocytosis to enter host cells. PLoS Pathog. 8 (6).
Sanchez-Torres, C., Gomez-Puertas, P., Gomez-del-Moral, M., Alonso, F.,
Escribano, J.M., Ezquerra, A., & Dominguez, J. (2003). Expression of
porcine CD163 on monocytes/macrophages correlates with permissiveness to
African swine fever infection. Arch. Virol. 148 (12), 2307–2323.
Sanford, B., Holinka, L.G., O’Donnell, V., Krug, P.W., Carlson, J.,
Alfano, M., Carrillo, C., Wu, P., Lowe, A., Risatti, G.R., Gladue, D.P.,
& Borca, M.V. (2016). Deletion of the thymidine kinase gene induces
complete attenuation of the Georgia isolate of African swine fever
virus. Virus Res. 213, 165–171.
Silk, R.N., Bowick, G.C., Abrams, C.C., & Dixon, L.K. (2007). African
swine fever virus A238L inhibitor of NF-kappa B and of calcineurin
phosphatase is imported actively into the nucleus and exported by a
CRM1-mediated pathway. J. Gen. Virol. 88, 411–419.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic.
Nat. Rev. Mol. Cell Biol. 10, 513–525. [CrossRef] [PubMed]
Valdeira, M.L., & Geraldes, A.
(1985). Morphological study on the entry of African swine fever virus
into cells. Biol. Cell. 55, 35–40. [CrossRef] [PubMed]
Youle, R.J., & Strasser, A. (2008). The BCL-2 protein family: opposing
activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9 (1),
47–59.
Yutin, N., Wolf, Y.I., Raoult, D., & Koonin, E.V. (2009). Eukaryotic
large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and
reconstruc-tion of viral genome evolution. Virology Journal 6,
http://dx.doi.org/10. 1186/1743-422X-6-223, Article Number: 223.
Zhang, F., Moon, A., Childs, K., Goodbourn, S., & Dixon, L.K. (2010).
The African swine fever virus DP71L protein recruits the protein
phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and
inhibits CHOP induction but is dispensable for these activities during
virus infection. J. Virol. 84 (20), 10681–10689.
Zsak, L., Lu, Z., Kutish, G.F., Neilan, J.G., & Rock, D.L. (1996). An
African swine fever virus virulence-associated gene NL-S with similarity
to the herpes simplex virus ICP34.5 gene. J. Virol. 70 (12), 8865–8871.
Fig. 1. ASFV enters the host cell and progress to endosomal
compartments where it got decapitated and synthesized new virions for
viral factory (Galindo and Alonso 2017).
Fig. 2. ASFV modulation of host immune response through
Mechanisms of apoptosis inhibition and others (Dixon et al., 2017).