References
Aaltonen H., Lindén A., Heinonsalo J., Biasi C. & Pumpanen J. (2016).
Effects of prolonged drought stress on Scots pine seedling carbon
allocation. Tree Physiology , 37(4), 418-427.
Adams H.D., Barron-Gafford G.A., Minor R.L., Gardea A.A., Bentley L.P.,
Law D.J. … Huxman T.E. (2017). The temperature response surface
for mortality risk of tree species with future drought.Environmental Research Letters , 12(11), 115014.
Alder N.N., Pockman W.T., Sperry J.S. & Nuismer S. (1997). Use of
centrifugal force in the study of xylem cavitation. Journal of
Experimental Botany , 48(308), 665-674.
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N.,
Vennetier M. … Cobb N. (2010). A global overview of drought and
heat-induced tree mortality reveals emerging climate change risks for
forests. Forest Ecology and Management , 259(4), 660-684.
Anderegg W.R.L., Berry J.A., Dmith D.D., Sperry J.S., Anderegg L.D.L. &
Field C.B. (2012). The roles of hydraulic and carbon stress in a
widespread climate-induced forest die-off. Proceedings of the
National Academy of Sciences of the United States of America . 109(1),
233-237.
Anderegg W.R.L., Plavcová L., Anderegg L.D.L., Hack U., Berry J.A. &
Field C.B. (2013). Drought’s legacy: multiyear hydraulic deterioration
underlies widespread aspen forest die-off and portends increased future
risk. Global Change Biology , 19(4), 1188-1196.
Anderegg W.R.L., Schwalm C., Biondi F., Camarero J.J., Koch G., Litvak
M. … Pacala S. (2015). Pervasive drought legacies in forest
ecosystems and their implications for carbon cycle models.Science , 349(6247), 528-532.
Bartlett M.K., Scoffoni C. & Sack L. (2015). The determinants of leaf
turgor loss point and prediction of drought tolerance of species and
biomes: a global meta-analysis. Ecology Letters , 15(5), 393-405.
Bartlett M.K., Zhang Y., Kreidler N., Sun S.W., Ardy R., Cao K.F., &
Sack L. (2014). Global analysis of plasticity in turgor loss point, a
key drought tolerance trait. Ecology Letters , 17(12), 1580-1590.
Breshears D.D., Myers O.B., Meyer C.W., Barnes F.J., Zou C.B., Allen
C.D. … Pockman W.T. (2009). Tree die-off in response to global
change-type drought: mortality insights from a decade of plant water
potential measurements. Frontiers in Ecology and the Environment ,
7(4), 185-189.
Brodribb T.J. & Holbrook N.M. (2003). Stomatal closure during leaf
dehydration, correlation with other leaf physiological traits.Plant Physiology , 132(4), 2166-2173.
Brodribb T.J., Bowman D.J.M.S., Nichols S., Delzon S. & Burlett R.
(2010). Xylem function and growth rate interact to determine recovery
rates after exposure to extreme water deficit. New Phytologist ,
188(2), 533-542.
Brodribb T.J., Holbrook N.M. & Gutiérrez M.V. (2002). Hydraulic and
photosynthetic co-ordination in seasonally dry tropical forest trees.Plant, Cell and Environment , 25(11), 1435-1444.
Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G. & Zanne A.E.
(2009). Towards a worldwide wood economics spectrum. Ecology
Letters , 12(4), 351-366.
Chaves M.M., Flexas J. & Pinheiro C. (2008). Photosynthesis under
drought and salt stress: regulation mechanisms from whole plant to cell.Annals of Botany , 103(4), 551-560.
Choat B., Brodribb T.J., Brodersen C.R., Duursma R.A., López R. &
Medlyn B.E. (2018). Triggers of tree mortality under drought.Nature , 558(7711), 531-539.
Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R.
… Zanne A.E. (2012). Global convergence in the vulnerability of
forests to drought. Nature , 491, 752-755.
Cook, E.R. (1985). A time-series analysis approach to tree-ring
standardization. Tucson: University of Arizona Press.
Cook E.R. & Kairiukstis L.A. (1990). Methods of dendrochronology.
Kluwer Academic Press, Dordrecht, Netherlands.
Dai A. (2011). Drought under global warming: a review. Wiley
Interdisciplinary Reviews Climate Change , 2(1), 45-65.
De Guzman M.E., Santiago L.S., Schnitzer S.A. & Álvarez-Cansino L.
(2017). Trade-offs between water transport capacity and drought
resistance in neotropical canopy liana and tree species. Tree
Physiology , 37(10), 1404-1414.
de Martonne E. (1926). Une nouvelle fanction climatologique: l’indice
d’aridité. La Météorologie , 2, 449-458
DeSoto L., Cailleret M., Sterck F., Jansen S., Kramer K., Robert E.M.R.
… Martínez-Vilalta J. (2020). Low growth resilience to drought is
related to future mortality risk in trees. Nature Communications ,
11(1), 545
Eller C.B., Barros F.D.V., Bittencourt P.R.L., Rowland L., Mencuccini M.
& Oliveira R.S. (2017). Xylem hydraulic safety and construction costs
determine tropical tree growth. Plant, Cell and Environment ,
41(3), 548-562.
Fan Z.X., Zhang S.B., Hao G.Y., Ferry S.J.W. & Cao K.F. (2012).
Hydraulic conductivity traits predict growth rates and adult stature of
40 Asian tropical tree species better than wood density. Journal
of Ecology , 100(3), 732-741.
Fang O.Y. & Zhang Q.B. (2019). Tree resilience to drought increases in
the Tibetan Plateau. Global Change Biology , 25(1), 245-253.
Fritts, H.C. (1976). Tree Rings and Climate. London, UK: Academic Press.
Gazol A., Camarero J.J., Anderegg W.R.L. & Vicente-Serrano S.M. (2017).
Impacts of droughts on the growth resilience of Northern Hemisphere
forests. Global Ecology and Biogeography , 26(2), 166-176.
Gazol A., Camarero J.J., Vicente-Serrano S.M., Sánchez-Salguero R.,
Gutiérrez E., Luis M.D. … Galván J.D. (2018). Forest resilience
to drought varies across biomes. Global change biology , 24(5),
2143-2158.
Gitlin A.R., Sthultz C.M., Bowker M.A., Stumpf S., Paxton K.L., Kennedy
K. … Witham T.G. (2006). Mortality gradients within and among
dominant plant populations as barometers of ecosystem change during
extreme drought. Conservation Biology , 20(5), 1477-1486.
Gleason S.M., Westoby M., Jansen S., Choat B., Hacke U.G., Pratt R.B. &
Zanne A.E. (2016). Weak tradeoff between xylem safety and xylem-specific
hydraulic efficiency across the world’s woody plant species. New
Phytologist , 209(1), 123-136.
Gong X.W., Guo J.J., Jiang D.M., Li X.H., Scholz F.G., Bucci S.J.
… Hao G.Y. (2020). Contrasts in xylem hydraulics and water use
underlie the sorting of different sand-fixing shrub species to early and
late stages of dune stabilization. Forest Ecology and Management ,
457, 117705.
Hammond W.M., Yu K., Wilson L.A., Will R.E., Anderegg W.R.L. & Henry D.
(2019). Dead or dying? Quantifying the point of no return from hydraulic
failure in drought-induced tree mortality. New Phytologist ,
223(4), 1834-1843.
Hao G.Y., Goldstein G., Sack L., Holbrook N.M., Liu Z.H., Wang A.Y.
… Cao K.F. (2011). Ecology of hemiepiphytism in fig species is
based on evolutionary correlation of hydraulics and carbon economy.Ecology , 92(11), 2117-2130.
Hao G.Y., Lucero M.E., Sanderson S.C., Zacharias E.H. & Holbrook N.M.
(2013). Polyploidy enhances the occupation of heterogeneous environments
through hydraulic related trade-offs in Atriplex canescens(Chenopodiaceae). New Phologist , 197(3), 970-978.
Herguido E., Granda E., Benavides R., García-Cevogón A.I., Camarero J.J.
& Valladares F. (2016). Contrasting growth and mortality responses to
climate warming of two pine species in a continental Mediterranean
ecosystem. Forest Ecology and Management , 363, 149-158.
Holmes R.L. (1983). Computer-assisted quality control in tree-ring
dating and measurement. Tree Ring Bull , 43, 69-78.
Hubbard
R.M., Ryan M.G., Stiller V. & Sperry J.S. (2001). Stomatal conductance
and photosynthesis vary linearly with plant hydraulic conductance in
ponderosa pine. Plant, Cell and Environment , 24(9), 113-121.
Kang H.Z., Zhu J.J., Li Z.H. & Xu M. (2004). Natural distribution ofPinus sylvestris var. mongolica on sandy land and its
cultivation as an exotic species. Chinese Journal of Ecology ,
23(5), 134-139.
Li M.Y., Fang L.D., Duan C.Y., Cao Y., Yin H., Ning Q.R. & Hao G.Y.
(2020a). Greater risk of hydraulic failure due to increased drought
threatens pine plantations in Horqin Sandy Land of northern China.Forest Ecology and Management , 461, 117980.
Li X.Y., Piao S.L., Wang K., Wang X.H., Wang T., Ciais P. …
Peñuelas J. (2020b). Temporal trade-off between gymnosperm resistance
and resilience increases forest sensitivity to extreme drought.Nature Ecology and Evolution , 4, 1075-1083.
Liu Y.Y., Wang A.Y., An Y.N., Lian P.Y., Wu D.D., Zhu J.J. … Hao
G.Y. (2018). Hydraulics play an important role in causing low growth
rate and dieback of aging Pinus sylvestris var.
mongolica trees in plantations of Northeast China. Plant, Cell
and Environment , 41(7), 1-12.
Liu Y.Y., Song J., Wang M., Li N., Niu C.Y. & Hao G.Y. (2015).
Coordination of xylem hydraulics and stomatal regulation in keeping the
integrity of xylem water transport in shoots of two compound-leaved tree
species. Tree Physiology, 35(12), 1333-1342.
Lloret F., Keeling E.G. & Sala A. (2011). Components of tree
resilience: effects of successive low-growth episodes in old ponderosa
pine forests. Oikos , 120(12), 1909-1920.
López R., Heredia U.L.D., Collada C., Cano F.J., Emerson B.C., Cochard
H. & Gil L. (2013). Vulnerability to cavitation, hydraulic efficiency,
growth and survival in an insular pine (Pinus canariensis ).Annals of Botany , 111(6), 1167-1179.
Macalady A.K. & Bugmann H. (2014). Growth-mortality relationships in
Piñon Pine (Pinus edulis ) during severe droughts of the past
century: shifting processes in space and time. PLoS One , 9(5),
e92770.
Manrique-Alba À., Sevanto S., Adams H.D., Collins A.D., Dickman L.T.,
Chirino E. … McDowell N.G. (2018). Stem radial growth and water
storage responses to heat and drought vary between conifers with
differing hydraulic strategies. Plant, Cell and Environment ,
41(8), 1926-1934.
Martínez-Vilalta J., López B.C., Loepfe L. & Lloret F. (2012). Stand-
and tree-level determinants of the drought response of Scots pine radial
growth. Oecologia , 168(3), 877-888.
Martínez-Vilalta J., Prat E., Oliveras I. & Piñol J. (2002). Xylem
hydraulic properties of roots and stems of nine Mediterranean woody
species. Oecologia , 133(1), 19-29.
McDowell N.G. (2011). Mechanisms linking drought, hydraulics, carbon
metabolism, and vegetation mortality. Plant Physiology , 155(3),
1051-1059.
Mcdowell N.G., Allen C.D. & Marshall L. (2010). Growth, carbon-isotope
discrimination, and drought-associate mortality across a Pinus
ponderosa elevational transect. Global Change Biology , 16(1),
399-415.
McDowell N., Pockman W.T., Allen C.D., Breshears D,D., Cobb N., Kolb T.
… Yepez E.A. (2008). Mechanisms of plant survival and mortality
during drought: why do some plants survive while others succumb to
drought? New Phytologist , 178(4), 719-739.
Meinzer F.C., Woodruff D.R., Marias D.E., Smith D.D., McCulloh K.A.,
Howard A. R. & Magedman A.L. (2016). Mapping ‘hydroscapes’ along the
iso- to anisohydric continuum of stomatal regulation of plant water
status. Ecology Letters , 19(11), 1343-1352.
Mitchell P.J., O’Grady A.P., Tissue D., White D.A., Ottenschlaeger M.L.
& Pinkard E.A. (2013). Drought response strategies define the relative
contributions of hydraulic dysfunction and carbohydrate depletion during
tree mortality. New Phytologist , 193(3), 867-872.
Montwé D., Spiecker H. & Hamann A. (2014). An experimentally controlled
extreme drought in a Norway spruce forest reveals fast hydraulic
response and subsequent recovery of growth rates. Trees , 28(3),
891-900.
O’Grady A.P., Mitchell P.J., Pinkard E.A. & Tissue D.T. (2013). Thirsty
roots and hungry leaves: Unravelling the role roles of carbon and water
dynamics in tree mortality. New Phytologist , 200(2), 294-297.
Ogle K., Whitham T.G. & Cobb N.S. (2000). Tree-ring variation in pinyon
predicts likelihood of death following severe drought. Ecology ,
81(11), 3237-3243.
Pammenter N.W. & Vander Willigen C. (1998). A mathematical and
statistical analysis of the curves illustrating vulnerability of xylem
to cavitation. Tree Physiology , 18(8-9), 589-593.
Pockman W.T. & Sperry J.S. (2000). Vulnerability to xylem cavitation
and the distribution of sonoran desert vegetation. American
Journal of Botany , 87(9), 1287-1299.
Poorter L., McDonald I., Alarcón A., Fichtler E., Licona J-C.,
Peña-Claros M. … Sass-Klaassen U. (2010). The importance of wood
traits and hydraulic conductance for the performance and life history
strategies of 42 rain forest trees pecies. New Phytologist ,
185(2), 481-492.
Rehschuh R., Cecilia A., Zuber M., Faragó T., Baumbach T., Hartmann H.
… Ruehr N. (2020). Drought-induced xylem embolism limits the
recovery of leaf gas exchange in Scots Pine. Plant Physiology ,
184(2), 852-864.
Reich P.B. (2014). The world-wide ’fast-slow’ plant economics spectrum:
a traits manifesto. Journal of Ecology , 102(2), 275-301.
Rigling A., Bigler C., Eilmann B., Feldmeyer-Christe E., Gimmi U.,
Ginzler C. … Dobbertin M. (2013). Driving factors of a vegetation
shift from Scots pine to pubescent oak in dry Alpine forests.Global Change Biology , 19(1), 229-240.
Sala A., Piper F. & Hoch G. (2010). Physiological mechanisms of
drought-induced tree mortality are far from being resolved. New
Phytologist , 186(2), 274-281.
Santiago L.S., De Guzman M., Baraloto C., Vogenberg J. E., Brodie M.,
Herault B. … Bonal D. (2018). Coordination and trade-offs among
hydraulic safety, efficiency and drought avoidance traits in Amazonian
rainforest canopy tree species. New Phytologist , 218(3),
1015-1024.
Schuldt B., Knutzen F., Delzon S., Jansen S., Müller-Haubold H., Burlett
R. … Leuschner C. (2016). How adaptable is the hydraulic system
of European beech in the face of climate change-related precipitation
reduction? New Phytologist , 210(2), 443-458.
Schulte P.J. & Hinckley T.M. (1985). A comparison of pressure-volume
curve data analysis techniques. Journal of Experimental Botany .
36(10), 1590-1602.
Schweingruber, F.H. (1988). Tree rings: basics and applications of
dendrochronology. Dordrecht/Boston/London: Kluwer Academic Pubishers.
Skelton R.P., Brodribb T.J., McAdam S.A.M. & Mitchell P.J. (2017). Gas
exchange recovery following natural drought is rapid unless limited by
loss of leaf hydraulic conductance: evidence from an evergreen woodland.New Phytologist , 215(4), 1399-1412.
Speer, J.H. (2010). Fundamentals of Tree-Ring Research. Tucson:
University of Arizona Press.
Sperry J.S. (2000). Hydraulic constraints on plant gas exchange.Agricultural and Forest Meteorology , 104(1), 13-23.
Sun L., Chang X.M., Yu X.X., Jia G.D., Chen L.H., Liu Z.Q. & Zhu X.H.
(2019). Precipitation and soil water thresholds associated with
drought-induced mortality of farmland shelter forests in a semi-arid
area. Agriculture Ecosystems and Environment , 284(17), 106595.
Taeger S., Zang C., Liesebach M., Schneck V. & Menzel A. (2013). Impact
of climate and drought events on the growth of Scots pine (Pinus
sylvestris L.) provenances. Forest Ecology and Management ,
307(1), 30-42.
Tausz M., Merchant A., Kruse J.R. & Samsa G. (2008). Estimation of
drought-related limitations to mid-rotation aged plantation grownEucalyptus globulus by phloem sap analysis. Forest Ecology
and Manage , 256(4), 844-848.
Tognetti R., Cherubini P. & Innes J.L. (2000). Comparative stem-growth
rates of Mediterranean trees under background and naturally enhanced
ambient CO2 concentrations. New Phytologist , 146(1), 59-74.
Tyree M.T. & Ewers F.W. (1991) The hydraulic architecture of trees and
other woody plants. New Phytologist, 119(3), 345-360.
Tyree M.T. & Hammel H.T. (1972). The measurement of the turgor pressure
and the water relations of plants by the pressure-bomb technique.Journal of Experimental Botany , 23(1), 1926-1941.
Tyree M.T. & Sperry J.S. (1988). Do woody plants operate near the point
of catastrophic xylem dysfunction caused by dynamic water stress?
Answers from a model. Plant Physiology , 88(3), 574-580.
Vanderwel M.C., Lyutsarev V.S. & Purves D.W. (2013). Climate-related
variation in mortality and recruitment determine regional forest-type
distributions. Global Ecology and Biogeography , 22(11),
1192-1203.
Verkerk P.J., Costanza R., Hetemaki L., Hetemäki L., Kubiszewski I.,
Leskinen P. … Palahí M. (2020).
Climate-Smart Forestry: the missing
link. Forest Policy and Economics , 115, 102164.
Way D.A. & Long S.P. (2015). Climate-smart agriculture and forestry:
maintaining plant productivity in a changing world while minimizing
production system effects on climate. Plant, Cell and
Environment , 38(9), 1683-1685.
Wheeler J.K., Sperry J.S., Hacke U.G. & Hoang N. (2005). Inter-vessel
pitting and cavitation in woody Rosaceae and other vesselled plants: a
basis for a safety versus efficiency trade-off in xylem transport.Plant, Cell and Environment , 28(6), 800-812.
Wigley T., Briffa K.R., Jones P.D. (1984). On the average value of
correlated time series, with applications in dendroclimatology and
hydrometeorology. Journal of Climatology & Applied Meteorology ,
23(2), 201-213.
Williams A.P., Allen C.D., Macalady K.A., Griffin D., Woodhouse C.A.,
Meko D.M. … McDowell N.G. (2013).
Temperature as a potent driver of
regional forest drought stress and tree mortality. Nature Climate
Change , 3, 292-297.
Wu X.C., Liu H.Y., Li X.Y., Ciais P., Babst F., Guo W.C. … Ma
Y.J. (2017). Differentiating drought legacy effects on vegetation growth
over the temperate Northern Hemisphere. Global Change Biology ,
24(1), 1-13.
Zang C., Hartl-Meier C., Dittmar C., Rothe A. & Menzel A. (2014).
Patterns of drought tolerance in major European temperate forest trees:
climatic drivers and levels of variability. Global Change
Biology , 20(12), 3767-3779.
Zhang S.B., Zhang J.L. & Cao K.F. (2017). Divergent hydraulic safety
strategies in three co-occurring Anacardiaceae tree species in a Chinese
savanna. Frontiers in Plant Science , 7, 02075.
Zhu J.J., Fan Z.P., Zeng D.H., Jiang F.Q. & Takeshi M. (2003).
Comparison of stand structure and growth between plantation and natural
forests of Pinus sylvestris var. mongolica on sandy land.Journal of Forestry Research , 14(2), 103-111.
Table 1 Basic information of the seven studied tree species,
dendrochronological statistics for the standard chronologies and the
growth resilience indices of 2015 drought event.