References
Aaltonen H., Lindén A., Heinonsalo J., Biasi C. & Pumpanen J. (2016). Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiology , 37(4), 418-427.
Adams H.D., Barron-Gafford G.A., Minor R.L., Gardea A.A., Bentley L.P., Law D.J. … Huxman T.E. (2017). The temperature response surface for mortality risk of tree species with future drought.Environmental Research Letters , 12(11), 115014.
Alder N.N., Pockman W.T., Sperry J.S. & Nuismer S. (1997). Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany , 48(308), 665-674.
Allen C.D., Macalady A.K., Chenchouni H., Bachelet D., McDowell N., Vennetier M. … Cobb N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management , 259(4), 660-684.
Anderegg W.R.L., Berry J.A., Dmith D.D., Sperry J.S., Anderegg L.D.L. & Field C.B. (2012). The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America . 109(1), 233-237.
Anderegg W.R.L., Plavcová L., Anderegg L.D.L., Hack U., Berry J.A. & Field C.B. (2013). Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Global Change Biology , 19(4), 1188-1196.
Anderegg W.R.L., Schwalm C., Biondi F., Camarero J.J., Koch G., Litvak M. … Pacala S. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models.Science , 349(6247), 528-532.
Bartlett M.K., Scoffoni C. & Sack L. (2015). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters , 15(5), 393-405.
Bartlett M.K., Zhang Y., Kreidler N., Sun S.W., Ardy R., Cao K.F., & Sack L. (2014). Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecology Letters , 17(12), 1580-1590.
Breshears D.D., Myers O.B., Meyer C.W., Barnes F.J., Zou C.B., Allen C.D. … Pockman W.T. (2009). Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Frontiers in Ecology and the Environment , 7(4), 185-189.
Brodribb T.J. & Holbrook N.M. (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits.Plant Physiology , 132(4), 2166-2173.
Brodribb T.J., Bowman D.J.M.S., Nichols S., Delzon S. & Burlett R. (2010). Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit. New Phytologist , 188(2), 533-542.
Brodribb T.J., Holbrook N.M. & Gutiérrez M.V. (2002). Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.Plant, Cell and Environment , 25(11), 1435-1444.
Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G. & Zanne A.E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters , 12(4), 351-366.
Chaves M.M., Flexas J. & Pinheiro C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.Annals of Botany , 103(4), 551-560.
Choat B., Brodribb T.J., Brodersen C.R., Duursma R.A., López R. & Medlyn B.E. (2018). Triggers of tree mortality under drought.Nature , 558(7711), 531-539.
Choat B., Jansen S., Brodribb T.J., Cochard H., Delzon S., Bhaskar R. … Zanne A.E. (2012). Global convergence in the vulnerability of forests to drought. Nature , 491, 752-755.
Cook, E.R. (1985). A time-series analysis approach to tree-ring standardization. Tucson: University of Arizona Press.
Cook E.R. & Kairiukstis L.A. (1990). Methods of dendrochronology. Kluwer Academic Press, Dordrecht, Netherlands.
Dai A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews Climate Change , 2(1), 45-65.
De Guzman M.E., Santiago L.S., Schnitzer S.A. & Álvarez-Cansino L. (2017). Trade-offs between water transport capacity and drought resistance in neotropical canopy liana and tree species. Tree Physiology , 37(10), 1404-1414.
de Martonne E. (1926). Une nouvelle fanction climatologique: l’indice d’aridité. La Météorologie , 2, 449-458
DeSoto L., Cailleret M., Sterck F., Jansen S., Kramer K., Robert E.M.R. … Martínez-Vilalta J. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications , 11(1), 545
Eller C.B., Barros F.D.V., Bittencourt P.R.L., Rowland L., Mencuccini M. & Oliveira R.S. (2017). Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment , 41(3), 548-562.
Fan Z.X., Zhang S.B., Hao G.Y., Ferry S.J.W. & Cao K.F. (2012). Hydraulic conductivity traits predict growth rates and adult stature of 40 Asian tropical tree species better than wood density. Journal of Ecology , 100(3), 732-741.
Fang O.Y. & Zhang Q.B. (2019). Tree resilience to drought increases in the Tibetan Plateau. Global Change Biology , 25(1), 245-253.
Fritts, H.C. (1976). Tree Rings and Climate. London, UK: Academic Press.
Gazol A., Camarero J.J., Anderegg W.R.L. & Vicente-Serrano S.M. (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography , 26(2), 166-176.
Gazol A., Camarero J.J., Vicente-Serrano S.M., Sánchez-Salguero R., Gutiérrez E., Luis M.D. … Galván J.D. (2018). Forest resilience to drought varies across biomes. Global change biology , 24(5), 2143-2158.
Gitlin A.R., Sthultz C.M., Bowker M.A., Stumpf S., Paxton K.L., Kennedy K. … Witham T.G. (2006). Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conservation Biology , 20(5), 1477-1486.
Gleason S.M., Westoby M., Jansen S., Choat B., Hacke U.G., Pratt R.B. & Zanne A.E. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist , 209(1), 123-136.
Gong X.W., Guo J.J., Jiang D.M., Li X.H., Scholz F.G., Bucci S.J. … Hao G.Y. (2020). Contrasts in xylem hydraulics and water use underlie the sorting of different sand-fixing shrub species to early and late stages of dune stabilization. Forest Ecology and Management , 457, 117705.
Hammond W.M., Yu K., Wilson L.A., Will R.E., Anderegg W.R.L. & Henry D. (2019). Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytologist , 223(4), 1834-1843.
Hao G.Y., Goldstein G., Sack L., Holbrook N.M., Liu Z.H., Wang A.Y. … Cao K.F. (2011). Ecology of hemiepiphytism in fig species is based on evolutionary correlation of hydraulics and carbon economy.Ecology , 92(11), 2117-2130.
Hao G.Y., Lucero M.E., Sanderson S.C., Zacharias E.H. & Holbrook N.M. (2013). Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens(Chenopodiaceae). New Phologist , 197(3), 970-978.
Herguido E., Granda E., Benavides R., García-Cevogón A.I., Camarero J.J. & Valladares F. (2016). Contrasting growth and mortality responses to climate warming of two pine species in a continental Mediterranean ecosystem. Forest Ecology and Management , 363, 149-158.
Holmes R.L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull , 43, 69-78.
Hubbard R.M., Ryan M.G., Stiller V. & Sperry J.S. (2001). Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell and Environment , 24(9), 113-121.
Kang H.Z., Zhu J.J., Li Z.H. & Xu M. (2004). Natural distribution ofPinus sylvestris var. mongolica on sandy land and its cultivation as an exotic species. Chinese Journal of Ecology , 23(5), 134-139.
Li M.Y., Fang L.D., Duan C.Y., Cao Y., Yin H., Ning Q.R. & Hao G.Y. (2020a). Greater risk of hydraulic failure due to increased drought threatens pine plantations in Horqin Sandy Land of northern China.Forest Ecology and Management , 461, 117980.
Li X.Y., Piao S.L., Wang K., Wang X.H., Wang T., Ciais P. … Peñuelas J. (2020b). Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought.Nature Ecology and Evolution , 4, 1075-1083.
Liu Y.Y., Wang A.Y., An Y.N., Lian P.Y., Wu D.D., Zhu J.J. … Hao G.Y. (2018). Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris  var. mongolica  trees in plantations of Northeast China. Plant, Cell and Environment , 41(7), 1-12.
Liu Y.Y., Song J., Wang M., Li N., Niu C.Y. & Hao G.Y. (2015). Coordination of xylem hydraulics and stomatal regulation in keeping the integrity of xylem water transport in shoots of two compound-leaved tree species. Tree Physiology, 35(12), 1333-1342.
Lloret F., Keeling E.G. & Sala A. (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos , 120(12), 1909-1920.
López R., Heredia U.L.D., Collada C., Cano F.J., Emerson B.C., Cochard H. & Gil L. (2013). Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis ).Annals of Botany , 111(6), 1167-1179.
Macalady A.K. & Bugmann H. (2014). Growth-mortality relationships in Piñon Pine (Pinus edulis ) during severe droughts of the past century: shifting processes in space and time. PLoS One , 9(5), e92770.
Manrique-Alba À., Sevanto S., Adams H.D., Collins A.D., Dickman L.T., Chirino E. … McDowell N.G. (2018). Stem radial growth and water storage responses to heat and drought vary between conifers with differing hydraulic strategies. Plant, Cell and Environment , 41(8), 1926-1934.
Martínez-Vilalta J., López B.C., Loepfe L. & Lloret F. (2012). Stand- and tree-level determinants of the drought response of Scots pine radial growth. Oecologia , 168(3), 877-888.
Martínez-Vilalta J., Prat E., Oliveras I. & Piñol J. (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia , 133(1), 19-29.
McDowell N.G. (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiology , 155(3), 1051-1059.
Mcdowell N.G., Allen C.D. & Marshall L. (2010). Growth, carbon-isotope discrimination, and drought-associate mortality across a Pinus ponderosa elevational transect. Global Change Biology , 16(1), 399-415.
McDowell N., Pockman W.T., Allen C.D., Breshears D,D., Cobb N., Kolb T. … Yepez E.A. (2008). Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist , 178(4), 719-739.
Meinzer F.C., Woodruff D.R., Marias D.E., Smith D.D., McCulloh K.A., Howard A. R. & Magedman A.L. (2016). Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecology Letters , 19(11), 1343-1352.
Mitchell P.J., O’Grady A.P., Tissue D., White D.A., Ottenschlaeger M.L. & Pinkard E.A. (2013). Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist , 193(3), 867-872.
Montwé D., Spiecker H. & Hamann A. (2014). An experimentally controlled extreme drought in a Norway spruce forest reveals fast hydraulic response and subsequent recovery of growth rates. Trees , 28(3), 891-900.
O’Grady A.P., Mitchell P.J., Pinkard E.A. & Tissue D.T. (2013). Thirsty roots and hungry leaves: Unravelling the role roles of carbon and water dynamics in tree mortality. New Phytologist , 200(2), 294-297.
Ogle K., Whitham T.G. & Cobb N.S. (2000). Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology , 81(11), 3237-3243.
Pammenter N.W. & Vander Willigen C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology , 18(8-9), 589-593.
Pockman W.T. & Sperry J.S. (2000). Vulnerability to xylem cavitation and the distribution of sonoran desert vegetation. American Journal of Botany , 87(9), 1287-1299.
Poorter L., McDonald I., Alarcón A., Fichtler E., Licona J-C., Peña-Claros M. … Sass-Klaassen U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rain forest trees pecies. New Phytologist , 185(2), 481-492.
Rehschuh R., Cecilia A., Zuber M., Faragó T., Baumbach T., Hartmann H. … Ruehr N. (2020). Drought-induced xylem embolism limits the recovery of leaf gas exchange in Scots Pine. Plant Physiology , 184(2), 852-864.
Reich P.B. (2014). The world-wide ’fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology , 102(2), 275-301.
Rigling A., Bigler C., Eilmann B., Feldmeyer-Christe E., Gimmi U., Ginzler C. … Dobbertin M. (2013). Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests.Global Change Biology , 19(1), 229-240.
Sala A., Piper F. & Hoch G. (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist , 186(2), 274-281.
Santiago L.S., De Guzman M., Baraloto C., Vogenberg J. E., Brodie M., Herault B. … Bonal D. (2018). Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytologist , 218(3), 1015-1024.
Schuldt B., Knutzen F., Delzon S., Jansen S., Müller-Haubold H., Burlett R. … Leuschner C. (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist , 210(2), 443-458.
Schulte P.J. & Hinckley T.M. (1985). A comparison of pressure-volume curve data analysis techniques. Journal of Experimental Botany . 36(10), 1590-1602.
Schweingruber, F.H. (1988). Tree rings: basics and applications of dendrochronology. Dordrecht/Boston/London: Kluwer Academic Pubishers.
Skelton R.P., Brodribb T.J., McAdam S.A.M. & Mitchell P.J. (2017). Gas exchange recovery following natural drought is rapid unless limited by loss of leaf hydraulic conductance: evidence from an evergreen woodland.New Phytologist , 215(4), 1399-1412.
Speer, J.H. (2010). Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press.
Sperry J.S. (2000). Hydraulic constraints on plant gas exchange.Agricultural and Forest Meteorology , 104(1), 13-23.
Sun L., Chang X.M., Yu X.X., Jia G.D., Chen L.H., Liu Z.Q. & Zhu X.H. (2019). Precipitation and soil water thresholds associated with drought-induced mortality of farmland shelter forests in a semi-arid area. Agriculture Ecosystems and Environment , 284(17), 106595.
Taeger S., Zang C., Liesebach M., Schneck V. & Menzel A. (2013). Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. Forest Ecology and Management , 307(1), 30-42.
Tausz M., Merchant A., Kruse J.R. & Samsa G. (2008). Estimation of drought-related limitations to mid-rotation aged plantation grownEucalyptus globulus by phloem sap analysis. Forest Ecology and Manage , 256(4), 844-848.
Tognetti R., Cherubini P. & Innes J.L. (2000). Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytologist , 146(1), 59-74.
Tyree M.T. & Ewers F.W. (1991) The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345-360.
Tyree M.T. & Hammel H.T. (1972). The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique.Journal of Experimental Botany , 23(1), 1926-1941.
Tyree M.T. & Sperry J.S. (1988). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model. Plant Physiology , 88(3), 574-580.
Vanderwel M.C., Lyutsarev V.S. & Purves D.W. (2013). Climate-related variation in mortality and recruitment determine regional forest-type distributions. Global Ecology and Biogeography , 22(11), 1192-1203.
Verkerk P.J., Costanza R., Hetemaki L., Hetemäki L., Kubiszewski I., Leskinen P. … Palahí M. (2020). Climate-Smart Forestry: the missing link. Forest Policy and Economics , 115, 102164.
Way D.A. & Long S.P. (2015). Climate-smart agriculture and forestry: maintaining plant productivity in a changing world while minimizing production system effects on climate. Plant, Cell and Environment , 38(9), 1683-1685.
Wheeler J.K., Sperry J.S., Hacke U.G. & Hoang N. (2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport.Plant, Cell and Environment , 28(6), 800-812.
Wigley T., Briffa K.R., Jones P.D. (1984). On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climatology & Applied Meteorology , 23(2), 201-213.
Williams A.P., Allen C.D., Macalady K.A., Griffin D., Woodhouse C.A., Meko D.M. … McDowell N.G. (2013). Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change , 3, 292-297.
Wu X.C., Liu H.Y., Li X.Y., Ciais P., Babst F., Guo W.C. … Ma Y.J. (2017). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology , 24(1), 1-13.
Zang C., Hartl-Meier C., Dittmar C., Rothe A. & Menzel A. (2014). Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology , 20(12), 3767-3779.
Zhang S.B., Zhang J.L. & Cao K.F. (2017). Divergent hydraulic safety strategies in three co-occurring Anacardiaceae tree species in a Chinese savanna. Frontiers in Plant Science , 7, 02075.
Zhu J.J., Fan Z.P., Zeng D.H., Jiang F.Q. & Takeshi M. (2003). Comparison of stand structure and growth between plantation and natural forests of Pinus sylvestris var. mongolica on sandy land.Journal of Forestry Research , 14(2), 103-111.
Table 1 Basic information of the seven studied tree species, dendrochronological statistics for the standard chronologies and the growth resilience indices of 2015 drought event.