References
Abu Jawdeh BG. COVID-19 in Kidney Transplantation: Outcomes, Immunosuppression Management, and Operational Challenges. Adv Chronic Kidney Dis. 2020;27(5):383–389.
Ahmed W, Al Obaidli AAK, Joseph P, et al. Outcomes of patients with end stage kidney disease on dialysis with COVID-19 in Abu Dhabi, United Arab Emirates; from PCR to antibody. BMC Nephrol. 2021;22(1):198.
Akalin E, Azzi Y, Bartash R, Seethamraju H, Parides M, Hemmige V, et al. Covid-19 and
Kidney Transplantation. N Engl J Med. 2020;382(25):2475-2477.
Al-Quteimat OM, Amer AM. The Impact of the COVID-19 Pandemic on Cancer Patients. Am J Clin Oncol. 2020;43(6):452-455.
Alhenc-Gelas F, Drueke TB. Blockade of SARS-CoV-2 infection by recombinant soluble ACE2. Kidney Int. 2020;97(6):1091–1093.
Apicella M, Campopiano MC, Mantuano M, et al. Review COVID-19 in people with diabetes : understanding the reasons for worse outcomes. Lancet Diabetes Endocrinol. 2020;8(9):782–792.
Bandyopadhyay D, Akhtar T, Hajra A, et al. COVID-19 Pandemic: Cardiovascular Complications and Future Implications. Am J Cardiovasc Drugs. 2020;20(4):311–324.
Bazhanov N, Escaffre O, Freiberg AN, Garofalo RP, Casola A. Broad-range antiviral activity
of hydrogen sulfide against highly pathogenic RNA viruses. Sci Rep. 2017;7:41029.
Bazhanov N, Ivanciuc T, Wu H, Garofalo M, Kang J, Xian M, Casola A. Thiol-Activated Hydrogen Sulfide Donors Antiviral and Anti-Inflammatory Activity in Respiratory Syncytial Virus Infection. Viruses. 2018;10(5):249.
Benedetti C, Waldman M, Zaza G, et al. COVID-19 and the Kidneys: An Update. Front Med. 2020;7(423):1–13.
Carriazo S, Kanbay M, Ortiz A. Kidney disease and electrolytes in COVID-19: more than meets the eye. Clin Kidney J. 2020;13(3):274–280.
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen sulfide attenuated sepsis-induced myocardial dysfunction through TLR4 pathway and endoplasmic reticulum stress. Front Physiol. 2021;12:653601.
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838.
Cheruiyot I, Kipkorir V, Ngure B, et al. Acute kidney injury is associated with worse prognosis in COVID-19 patients : a systematic review and meta-analysis. Acta Biomed. 2020;91(3):1–12.
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: pathophysiology and therapeutic approaches. J Adv Res. 2020;27:99–113.
Cravedi P, Mothi SS, Azzi Y, Haverly M, Farouk SS, Pérez-Sáez MJ, et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am J Transplant. 2020;20(11):3140-3148.
D’Marco L, Puchades MJ, Romero-Parra M, et al. Diabetic Kidney Disease and COVID-19: The Crash of Two Pandemics. Front Med. 2020; 7(199):6–8.
de Alencar JCG, Moreira CL, Müller AD, Chaves CE, Fukuhara MA, et al. Double-blind, randomized, placebo-controlled trial with N-acetylcysteine for treatment of severe acute respiratory syndrome caused by COVID-19. Clin Infect Dis. 2021;72(11):e736-e741.
Diao B, Wang C, Wang R, et al. Human Kidney is a Target for Novel Severe Acute Respiratory Syndrome Coronavirus 2 ( SARS-CoV-2 ) Infection. Nat Commun. 2021;12(1):2506.
Dobesh PP, Trujillo TC. Coagulopathy, Venous Thromboembolism, and Anticoagulation in Patients with COVID-19. Pharmacotherapy. 2020;40(11):1130–1151.
Dominic P, Ahmad J, Bhandari R, Pardue S, Solorzano J, Jaisingh K, Watts M, Bailey SR,
Orr AW, Kevil CG, Kolluru GK. Decreased availability of nitric oxide and hydrogen sulfide
is a hallmark of COVID-19. Redox Biol. 2021;43:101982.
Douglas M, Katikireddi SV, Taulbut M, et al. Mitigating the wider health effects of covid-19 pandemic response. BMJ. 2020;369:1–6.
Duan XC, Guo R, Liu SY, Xiao L, Xue HM, Guo Q, Jin S, Wu YM. Gene transfer of cystathionine beta-synthase into RVLM increases hydrogen sulfide-mediated suppression of sympathetic outflow via KATP channel in normotensive rats. Am J Physiol Heart Circ Physiol. 2015;308(6):H603-11.
Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR, Henning RH. Dopamine treatment attenuates acute kidney injury in a rat model of deep hypothermia and rewarming - The role of renal H2S-producing enzymes. Eur J Pharmacol. 2015a;769:225-33.
Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH. Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production. PLoS One. 2015;10(8):e0136113.
Dummer PD, Limou S, Rosenberg AZ, Heymann J, Nelson G, Winkler CA, et al. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin Nephrol. 2015;35(3):222-36.
Fang F, Li H, Cui W, Dong Y. Treatment of hepatitis caused by cytomegalovirus with
allitridin injection- an experimental study. J Tongji Med Univ. 1999;19(4):271-4.
Fisher DA, Carson G. Back to basics: the outbreak response pillars. Lancet. 2020;396:597–598.
Fu D, Yan B, Xu J, et al. COVID-19 Infection in a Patient with End-Stage Kidney Disease. Nephron. 2020;144(5):245–247.
Ged Y, Markowski MC, Pierorazio PM. Advanced renal cell carcinoma and COVID-19 – a personal perspective. Nat Rev Urol. 2020;17(8):425-427.
Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI, et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African-Americans. Science. 2010;329:841-5.
Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M. The novel mitochondria-targeted hydrogen sulfide (H(2)S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res. 2016;113(Pt A):186-198.
González J, Ciancio G. Early experience with COVID-19 in kidney transplantation recipients: update and review. Int Braz J Urol. 2020;46(Suppl 1):145–155.
Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. The Lancet Haematol. 2020;7(8):e575–e582.
Grambow E, Leppin C, Leppin K, Kundt G, Klar E, Frank M, Vollmar B. The effects of
hydrogen sulfide on platelet-leukocyte aggregation and microvascular thrombolysis. Platelets.
2017;28(5):509-517.
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for
immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev. 2020;53:13-24.
Guo Q, Jin S, Wang XL, Wang R, Xiao L, He RR, Wu YM. Hydrogen sulfide in the rostral
ventrolateral medulla inhibits sympathetic vasomotor tone through ATP-sensitive K+
channels. J Pharmacol Exp Ther. 2011;338(2):458-65.
Hati S, Bhattacharyya S. Impact of thiol-disulfide balance on the binding of Covid-19 spike
protein with angiotensin-converting enzyme 2 receptor. ACS Omega. 2020;5(26):16292–
16298.
Hilbrands LB, Duivenvoorden R, Vart P, Franssen CFM, Hemmelder MH, Jager KJ, et al.
COVID-19-related mortality in kidney transplant and dialysis patients: results of the
ERACODA collaboration. Nephrol Dial Transplant. 2020;35(11):1973-1983.
Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020;98(1):209-218.
Horoz M, Bolukbas C, Bolukbas FF, Aslan M, Koylu AO, Selek S, Erel O. Oxidative stress
in hepatitis C infected end-stage renal disease subjects. BMC Infect Dis. 2006;6:114.
Iba T, Levy JH, Connors JM, et al. The unique characteristics of COVID-19 coagulopathy. Crit Care. 2020;24(1):360.
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, and Williams
M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous
N-acetylcysteine. Clin Immunol 2020;219:108544.
Ichimura T., Mori Y., Aschauer P., et al. KIM-1/TIM-1 is a receptor for SARS-CoV-2 in lung
and kidney. medRxiv. 2020; 2020.09.16.20190694. doi: 10.1101/2020.09.16.20190694.
Ivanciuc T, Sbrana E, Ansar M, Bazhanov N, Szabo C, Casola A, Garofalo RP. Hydrogen
sulfide is an antiviral and antiinflammatory endogenous gasotransmitter in the airways. Role
in respiratory syncytial virus infection. Am J Respir Cell Mol Biol. 2016;55(5):684-696.
Izzedine H, Jhaveri KD. Acute kidney injury in patients with COVID-19: an update
on the pathophysiology. Nephrol Dial Transplant. 2021;36(2):224–226.
Kamel MH, Mahmoud H, Zhen A, et al. End-stage kidney disease and COVID-19 in an urban safety-net hospital in Boston, Massachusetts. PLoS One. 2021;16(6).e0252679.
Kasembeli AN, Duarte R, Ramsay M, Mosiane P, Dickens C, Dix-Peek T, et al. APOL1 Risk Variants Are Strongly Associated with HIV-Associated Nephropathy in Black South Africans. J Am Soc Nephrol. 2015;26(11):2882-90.
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S, Kusko R, Zeskind B,
Kaufman H. Advanced bioinformatics rapidly identifies existing therapeutics for patients
with coronavirus disease-2019 (COVID-19). J Transl Med. 2020;18(1):257.
Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020;98(1):228-231.
Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, et al. APOL1 genetic
variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc
Nephrol. 2011;22(11):2129-37.
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11(8):875–879.
Kudose S, Batal I, Santoriello D, et al. Kidney Biopsy Findings in Patients with COVID-19. J Am Soc Nephrol. 2020;31(9):1959–1968.
Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie YF, Ohia SE. Effect of hydrogen sulfide on sympathetic neurotransmission and catecholamine levels in isolated porcine iris-ciliary body. Neurochem Res. 2009;34(3):400-6.
Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic review and meta-analysis. Ann Med. 2020;52(7):345–353.
La Milia V, Bacchini G., Bigi MC, et al. COVID-19 Outbreak in a Large Hemodialysis Center in Lombardy, Italy. Kidney Int. 2020;5(7):1095–1099.
Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MdA.Collapsing Glomerulopathy in a Patient With Coronavirus Disease 2019 (COVID-19). Kidney Int Rep. 2020;5(6):935-939.Menon R, Otto EA, Sealfon R, et al. SARS-CoV-2 receptor networks in diabetic and COVID-19–associated kidney disease. Kidney Int. 2020;98(6):1502–1518.
Li H, Ma Y, Escaffre O, Ivanciuc T, Komaravelli N, Kelley JP, Coletta C, Szabo C, Rockx
B, Garofalo RP, Casola A. Role of hydrogen sulfide in paramyxovirus infections. J Virol.
2015;89(10):5557-68.
Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation. 2008;117:2351e2360.
Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD. Anti-SARS
coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic
compounds. Antiviral Res. 2005;68(1):36-42.
Lin F, Liao C, Sun Y, et al. Hydrogen sulfide inhibits cigarette smoke-induced endoplasmic
reticulum stress and apoptosis in bronchial epithelial cells. Front Pharmacol. 2017;8:675.
Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen sulfide attenuates atherosclerosis in a
partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2
expression. Front Physiol. 2017;8:782.
Liu Y., Wang M., Luo G., et al. Experience of N-acetylcysteine airway management in the
successful treatment of one case of critical condition with COVID-19: a case report.
Medicine (Baltimore) 2020;99(42):e22577.
Lobb I, Zhu J, Liu W, Haig A, Lan Z, Sener A. Hydrogen sulfide treatment improves long-
term renal dysfunction resulting from prolonged warm renal ischemia-reperfusion injury.
Canadian Urological Association Journal. 2014;8(5-6):413.
Lu X, Li W, Wang G, Wang Q, Jiang Y, Gao J, Zhao X, Xu L. Effect of hydrogen sulfide on
tissue factor-induced disseminated intravascular coagulation in rabbits. Zhonghua Wei Zhong
Bing Ji Jiu Yi Xue. 2015;27(2):92-6.
Manček-Keber M, Hafner-Bratkovič I, Lainšček D, et al. Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J. 2021;35(6):e21651.
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal. 2020;32(2):110-144.
Mihalopoulos M, Dogra N, Mohamed N, et al. COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer. Eur Urol Focus. 2020;6(5):1086–1096.
Mikami Y, Shinuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide, Biochem. J. 2011;439:479e485.
Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3-mecaptopyruvate sulfurtransferase maintains mitochondrial electron transport flow and supports cellular biogenesis, FASEB J. 2013;27:601e611.
Mohamed MMB, Lukitsch I, Torres-Ortiz AE, Walker JB, Varghese V, Hernandez-Arroyo CF, et al. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. Kidney360. 2020;1(7):614-622.
Mukherjee A, Ghosh R, Furment MM. Case Report: COVID-19 Associated Renal Infarction and Ascending Aortic Thrombosis. Am J Trop Med Hyg. 2020;103(5):1989–1992.
Naaraayan A, Nimkar A, Hasan A, et al. End-Stage Renal Disease Patients on Chronic Hemodialysis Fare Better With COVID-19: A Retrospective Cohort Study From the New York Metropolitan Region. Cureus. 2020;12(9):e10373.
Ng JH, Bijol V, Sparks MA, et al. Pathophysiology and Pathology of Acute Kidney Injury in Patients With COVID-19. Adv Chronic Kidney Dis. 2020;27(5):365–376.
Ng JH, Hirsch JS. Wanchoo R, et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney Int. 2020;98(6):1530–1539.
Nichols B, Jog P, Lee JH, Blackler D,WilmotM, D’Agati V, et al.: Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015;87:332–342.
Ofori-Asenso R, Ogundipe O, Adom Agyeman A, et al. Cancer is associated with severe disease in COVID-19 patients: a systematic review and meta-analysis. Ecancermedicalscience. 2020; 14:1–10.
Ortega-Paz, L, Capodanno D, Montalescot G, et al. Coronavirus Disease 2019–Associated Thrombosis and Coagulopathy: Review of the Pathophysiological Characteristics and Implications for Antithrombotic Management. J Am Heart Assoc. 2021;10(3):e019650.
Pacheco A. Sulfur-containing compounds as hydrogen sulfide donors and broad-spectrum
antiviral agents. Washington State University. ProQuest Dissertations Publishing. 2017;
10285521.
Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum. Diabetes Res Clin Pract. 2020;162:1–3.
Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, Di Francesco P,
Favalli C, Rotilio G, Garaci E. Evidence for antiviral activity of glutathione: in vitro
inhibition of herpes simplex virus type 1 replication. Antiviral Res. 1995;27(3):237-53.
Palmeira A, Sousa E, Köseler A, et al. Preliminary virtual screening studies to identify GRP78 inhibitors which may interfere with SARS-CoV-2 infection. Pharmaceuticals (Basel) 2020;13(6):132.
Pan XW, Xu D, Zhang H, Wang Z, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020;31:1-3.
Pei G, Zhang Z, Peng J, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J Am Soc Nephrol. 2020;31(6):1157–1165.
Peleg Y, Kudose S, D’Agati V, Siddall E, Ahmad S, Kisselev S, et al. Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19 Infection. Kidney Int Rep. 2020;5(6):940-945.
Perico L, Benigni A, Remuzzi G. Should COVID-19 Concern Nephrologists? Why and to What Extent? The Emerging Impasse of Angiotensin Blockade. Nephron. 2020;144(5):213–221.
Pfister F, Vonbrunn E, Ries T, Jäck HM, Überla K, Lochnit G, Sheriff A, Herrmann M,
Büttner-Herold M, Amann K, Daniel C. Complement activation in kidneys of patients with
COVID-19. Front Immunol. 2021;11:594849.
Portolés J, Marques M, López-Sánchez P, et al. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dialy Transplant. 2020;35(8):1353-1361.
Porzionato A, Emmi A, Barbon S, et al. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J. 2020;287(17):3681–3688.
Post A, den Deurwaarder ESG, Bakker SJL, et al. Kidney Infarction in Patients With COVID-19. Am J Kidney Dis. 2020;76(3):431–435.
Puyo C, Kreig D, Saddi V, Ansari E, and Prince O. Case report: use of hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19 positive patient. F1000Research 2020;9:491.
Qian JY, Wang B, Liu BC. Acute Kidney Injury in the 2019 Novel Coronavirus Disease. Kidney Dis. 2020;6(5):318–323.
Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine. 2020;24:1–9.
Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C, Kyriakopoulou M,
Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ. Serum hydrogen sulfide
and outcome association in pneumonia by the SARS-CoV-2 coronavirus. Shock.
2020;54(5):633-637.
Robbins-Juarez SY, Qian L, King KL, et al. Outcomes for Patients With COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis. Kidney Int. Rep. 2020;5(8):1149–1160.
Sallenave JM, Guillot L. Innate immune signaling and proteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19: key therapeutic targets? Front Immunol. 2020;11:1229.
Salvi A, Bankhele P, Jamil JM, Kulkarni-Chitnis M, Njie-Mbye YF, Ohia SE, Opere CA. Pharmacological Actions of Hydrogen Sulfide Donors on Sympathetic Neurotransmission in the Bovine Anterior Uvea, In Vitro. Neurochem Res. 2016;41(5):1020-8.
Shibuya N, Koike S, Tanaka M, et al. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. 2013;4:1366.
Srivastava A, Patel HV, Kim S, et al. Delaying surgery for clinical T1b-T2bN0M0 renal cell carcinoma: Oncologic implications in the COVID-19 era and beyond. J Clin Oncol. 2021;39(6):283–283.
Strazzula L, Nigwekar SU, Steele D, et al. Intralesional sodium thiosulfate for the treatment
of calciphylaxis. JAMA Dermatol. 2013;149(8):946-949.
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227.
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol. 2020;10:1568.
Swai J. Mortality rate of acute kidney injury in SARS, MERS, and COVID-19 infection: a systematic review and meta-analysis. Crit Care. 2020;24(1):555.
Taher A, Alalwan AA, Naser N, Alsegai O, Alaradi A. Acute Kidney Injury in COVID-19 Pneumonia: A Single-Center Experience in Bahrain. Cureus. 2020;12:1–14.
Tayo BO, Kramer H, Salako BL, Gottesman O, McKenzie CA, Ogunniyi A, et al. Genetic variation in APOL1 and MYH9 genes is associated with chronic kidney disease among Nigerians. Int Urol Nephrol. 2013;45(2):485-94.
Tomita M, Nagahara N, Ito T. Expression of 3-mecaptopyruvate sulfurtransferase in the mouse. Molecules. 2016;21(12):1707.
Tripathi SC, Deshmukh V, Creighton CJ, et al. Renal Carcinoma Is Associated With Increased Risk of Coronavirus Infections. Front Mol Biosci. 2020;7:1–12.
Ulasi, II, Tzur S, Wasser WG, Shemer R, Kruzel E, Feigin E, et al. High population frequencies of APOL1 risk variants are associated with increased prevalence of non-diabetic chronic kidney disease in the Igbo people from south-eastern Nigeria. Nephron Clin Pract. 2013;123(1-2):123-8.
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
Velavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Health. 2020;25(3):278-280.
Wang R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous
transmitter? FASEB J. 2002;16(13):1792-8.
Wald R, Bagshaw SM. COVID-19–Associated Acute Kidney Injury: Learning from the First Wave. J Am Soc Nephrol. 2020;32(1):4–6.
Wallis CJD, Novara G, Marandino L, et al. Risks from Deferring Treatment for Genitourinary Cancers: A Collaborative Review to Aid Triage and Management During the COVID-19 Pandemic. Eur Urol. 2020;78(1):29–42.
Wan C, Zhang C. Kidney injury molecule-1: a novel entry factor for SARS-CoV-2. J Mol Cell Biol. 2021;13(3):159–160.
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271.
Wei H, Zhang R, Jin H, et al. Hydrogen sulfide attenuates hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress in rats. Antioxid Redox Signal. 2010;12(9):1079–1091.
Wu J, Deng W, Li S, et al. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci. 2021;78(2):531–544.
Xia M, Chen L, Muh RW, Li PL, Li N. Production and action of hydrogen sulfide, a novel gaseous bioactive substance in the kidneys, J. Pharmacol. Exp. Ther. 2009;329:1056e1062.
Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, et al. Distribution of hydrogen sulfide (H2S)-producing enzymes and the roles of the H2S donor sodium hydrosulfide in diabetic nephropathy. Clin Exp Neph-rol. 2013;17(1):32–40.
Yang C, Zhang Y, Zeng X, et al. Kidney injury molecule-1 is a potential receptor for SARS-
CoV-2. J Mol Cell Biol. 2021;13(3):185–196.
Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, Hine C. Non-enzymatic
hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B(6).
Commun Biol. 2019;2:194.
Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and Immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):128.
Yi J, Yuan Y, Zheng J, Hu N. Hydrogen sulfide alleviates uranium-induced kidney cell apoptosis
mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling.
Free Radic Res. 2018;52(9):1020–1029.
Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY, Liu YJ, Wang CN. H2S Attenuates
LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation.
Cell Physiol Biochem. 2016;40(6):1603-1612.
Zhen H, Fang F, Ye DY, Shu SN, Zhou YF, Dong YS, Nie XC, Li G. Experimental study on
the action of allitridin against human cytomegalovirus in vitro: Inhibitory effects on
immediate-early genes. Antiviral Res. 2006;72(1):68-74.