References
Abu Jawdeh BG. COVID-19 in Kidney Transplantation: Outcomes,
Immunosuppression Management, and Operational Challenges. Adv Chronic
Kidney Dis. 2020;27(5):383–389.
Ahmed W, Al Obaidli AAK, Joseph P, et al. Outcomes of patients with end
stage kidney disease on dialysis with COVID-19 in Abu Dhabi, United Arab
Emirates; from PCR to antibody. BMC Nephrol. 2021;22(1):198.
Akalin E, Azzi Y, Bartash R, Seethamraju H, Parides M, Hemmige V, et al.
Covid-19 and
Kidney Transplantation. N Engl J Med. 2020;382(25):2475-2477.
Al-Quteimat OM, Amer AM. The Impact of the COVID-19 Pandemic on Cancer
Patients. Am J Clin Oncol. 2020;43(6):452-455.
Alhenc-Gelas F, Drueke TB. Blockade of SARS-CoV-2 infection by
recombinant soluble ACE2. Kidney Int. 2020;97(6):1091–1093.
Apicella M, Campopiano MC, Mantuano M, et al. Review COVID-19 in people
with diabetes : understanding the reasons for worse outcomes. Lancet
Diabetes Endocrinol. 2020;8(9):782–792.
Bandyopadhyay D, Akhtar T, Hajra A, et al. COVID-19 Pandemic:
Cardiovascular Complications and Future Implications. Am J Cardiovasc
Drugs. 2020;20(4):311–324.
Bazhanov N, Escaffre O, Freiberg AN, Garofalo RP, Casola A. Broad-range
antiviral activity
of hydrogen sulfide against highly pathogenic RNA viruses. Sci Rep.
2017;7:41029.
Bazhanov N, Ivanciuc T, Wu H, Garofalo M, Kang J, Xian M, Casola A.
Thiol-Activated Hydrogen Sulfide Donors Antiviral and Anti-Inflammatory
Activity in Respiratory Syncytial Virus Infection. Viruses.
2018;10(5):249.
Benedetti C, Waldman M, Zaza G, et al. COVID-19 and the Kidneys: An
Update. Front Med. 2020;7(423):1–13.
Carriazo S, Kanbay M, Ortiz A. Kidney disease and electrolytes in
COVID-19: more than meets the eye. Clin Kidney J. 2020;13(3):274–280.
Chen YH, Teng X, Hu ZJ, Tian DY, Jin S, Wu YM. Hydrogen sulfide
attenuated sepsis-induced myocardial dysfunction through TLR4 pathway
and endoplasmic reticulum stress. Front Physiol. 2021;12:653601.
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with
in-hospital death of patients with COVID-19. Kidney Int.
2020;97(5):829–838.
Cheruiyot I, Kipkorir V, Ngure B, et al. Acute kidney injury is
associated with worse prognosis in COVID-19 patients : a systematic
review and meta-analysis. Acta Biomed. 2020;91(3):1–12.
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of
hydrogen sulfide in endothelial dysfunction: pathophysiology and
therapeutic approaches. J Adv Res. 2020;27:99–113.
Cravedi P, Mothi SS, Azzi Y, Haverly M, Farouk SS, Pérez-Sáez MJ, et al.
COVID-19 and kidney transplantation: Results from the TANGO
International Transplant Consortium. Am J Transplant.
2020;20(11):3140-3148.
D’Marco L, Puchades MJ, Romero-Parra M, et al. Diabetic Kidney Disease
and COVID-19: The Crash of Two Pandemics. Front Med. 2020; 7(199):6–8.
de Alencar JCG, Moreira CL, Müller AD, Chaves CE, Fukuhara MA, et al.
Double-blind, randomized, placebo-controlled trial with N-acetylcysteine
for treatment of severe acute respiratory syndrome caused by COVID-19.
Clin Infect Dis. 2021;72(11):e736-e741.
Diao B, Wang C, Wang R, et al. Human Kidney is a Target for Novel Severe
Acute Respiratory Syndrome Coronavirus 2 ( SARS-CoV-2 ) Infection. Nat
Commun. 2021;12(1):2506.
Dobesh PP, Trujillo TC. Coagulopathy, Venous Thromboembolism, and
Anticoagulation in Patients with COVID-19. Pharmacotherapy.
2020;40(11):1130–1151.
Dominic P, Ahmad J, Bhandari R, Pardue S, Solorzano J, Jaisingh K, Watts
M, Bailey SR,
Orr AW, Kevil CG, Kolluru GK. Decreased availability of nitric oxide and
hydrogen sulfide
is a hallmark of COVID-19. Redox Biol. 2021;43:101982.
Douglas M, Katikireddi SV, Taulbut M, et al. Mitigating the wider health
effects of covid-19 pandemic response. BMJ. 2020;369:1–6.
Duan XC, Guo R, Liu SY, Xiao L, Xue HM, Guo Q, Jin S, Wu YM. Gene
transfer of cystathionine beta-synthase into RVLM increases hydrogen
sulfide-mediated suppression of sympathetic outflow via KATP channel in
normotensive rats. Am J Physiol Heart Circ Physiol. 2015;308(6):H603-11.
Dugbartey GJ, Talaei F, Houwertjes MC, Goris M, Epema AH, Bouma HR,
Henning RH. Dopamine treatment attenuates acute kidney injury in a rat
model of deep hypothermia and rewarming - The role of renal
H2S-producing enzymes. Eur J Pharmacol.
2015a;769:225-33.
Dugbartey GJ, Bouma HR, Strijkstra AM, Boerema AS, Henning RH. Induction
of a Torpor-Like State by 5’-AMP Does Not Depend on H2S
Production. PLoS One. 2015;10(8):e0136113.
Dummer PD, Limou S, Rosenberg AZ, Heymann J, Nelson G, Winkler CA, et
al. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin
Nephrol. 2015;35(3):222-36.
Fang F, Li H, Cui W, Dong Y. Treatment of hepatitis caused by
cytomegalovirus with
allitridin injection- an experimental study. J Tongji Med Univ.
1999;19(4):271-4.
Fisher DA, Carson G. Back to basics: the outbreak response pillars.
Lancet. 2020;396:597–598.
Fu D, Yan B, Xu J, et al. COVID-19 Infection in a Patient with End-Stage
Kidney Disease. Nephron. 2020;144(5):245–247.
Ged Y, Markowski MC, Pierorazio PM. Advanced renal cell carcinoma and
COVID-19 – a personal perspective. Nat Rev Urol. 2020;17(8):425-427.
Genovese G, Friedman DJ, Ross MD, Lecordier L, Uzureau P, Freedman BI,
et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in
African-Americans. Science. 2010;329:841-5.
Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL,
Wood M, Whiteman M. The novel mitochondria-targeted hydrogen sulfide
(H(2)S) donors AP123 and AP39 protect against hyperglycemic injury in
microvascular endothelial cells in vitro. Pharmacol Res. 2016;113(Pt
A):186-198.
González J, Ciancio G. Early experience with COVID-19 in kidney
transplantation recipients: update and review. Int Braz J Urol.
2020;46(Suppl 1):145–155.
Goshua G, Pine AB, Meizlish ML, et al. Endotheliopathy in
COVID-19-associated coagulopathy: evidence from a single-centre,
cross-sectional study. The Lancet Haematol. 2020;7(8):e575–e582.
Grambow E, Leppin C, Leppin K, Kundt G, Klar E, Frank M, Vollmar B. The
effects of
hydrogen sulfide on platelet-leukocyte aggregation and microvascular
thrombolysis. Platelets.
2017;28(5):509-517.
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6:
Relevance for
immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev.
2020;53:13-24.
Guo Q, Jin S, Wang XL, Wang R, Xiao L, He RR, Wu YM. Hydrogen sulfide in
the rostral
ventrolateral medulla inhibits sympathetic vasomotor tone through
ATP-sensitive K+
channels. J Pharmacol Exp Ther. 2011;338(2):458-65.
Hati S, Bhattacharyya S. Impact of thiol-disulfide balance on the
binding of Covid-19 spike
protein with angiotensin-converting enzyme 2 receptor. ACS Omega.
2020;5(26):16292–
16298.
Hilbrands LB, Duivenvoorden R, Vart P, Franssen CFM, Hemmelder MH, Jager
KJ, et al.
COVID-19-related mortality in kidney transplant and dialysis patients:
results of the
ERACODA collaboration. Nephrol Dial Transplant. 2020;35(11):1973-1983.
Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute
kidney injury in patients hospitalized with COVID-19. Kidney Int.
2020;98(1):209-218.
Horoz M, Bolukbas C, Bolukbas FF, Aslan M, Koylu AO, Selek S, Erel O.
Oxidative stress
in hepatitis C infected end-stage renal disease subjects. BMC Infect
Dis. 2006;6:114.
Iba T, Levy JH, Connors JM, et al. The unique characteristics of
COVID-19 coagulopathy. Crit Care. 2020;24(1):360.
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K,
Staniloae C, and Williams
M. Therapeutic blockade of inflammation in severe COVID-19 infection
with intravenous
N-acetylcysteine. Clin Immunol 2020;219:108544.
Ichimura T., Mori Y., Aschauer P., et al. KIM-1/TIM-1 is a receptor for
SARS-CoV-2 in lung
and kidney. medRxiv. 2020; 2020.09.16.20190694. doi:
10.1101/2020.09.16.20190694.
Ivanciuc T, Sbrana E, Ansar M, Bazhanov N, Szabo C, Casola A, Garofalo
RP. Hydrogen
sulfide is an antiviral and antiinflammatory endogenous gasotransmitter
in the airways. Role
in respiratory syncytial virus infection. Am J Respir Cell Mol Biol.
2016;55(5):684-696.
Izzedine H, Jhaveri KD. Acute kidney injury in patients with COVID-19:
an update
on the pathophysiology. Nephrol Dial Transplant. 2021;36(2):224–226.
Kamel MH, Mahmoud H, Zhen A, et al. End-stage kidney disease and
COVID-19 in an urban safety-net hospital in Boston, Massachusetts. PLoS
One. 2021;16(6).e0252679.
Kasembeli AN, Duarte R, Ramsay M, Mosiane P, Dickens C, Dix-Peek T, et
al. APOL1 Risk Variants Are Strongly Associated with HIV-Associated
Nephropathy in Black South Africans. J Am Soc Nephrol.
2015;26(11):2882-90.
Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, Barrett S,
Kusko R, Zeskind B,
Kaufman H. Advanced bioinformatics rapidly identifies existing
therapeutics for patients
with coronavirus disease-2019 (COVID-19). J Transl Med. 2020;18(1):257.
Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al.
Collapsing glomerulopathy in a COVID-19 patient. Kidney Int.
2020;98(1):228-231.
Kopp JB, Nelson GW, Sampath K, Johnson RC, Genovese G, An P, et al.
APOL1 genetic
variants in focal segmental glomerulosclerosis and HIV-associated
nephropathy. J Am Soc
Nephrol. 2011;22(11):2129-37.
Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting
enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med.
2005;11(8):875–879.
Kudose S, Batal I, Santoriello D, et al. Kidney Biopsy Findings in
Patients with COVID-19. J Am Soc Nephrol. 2020;31(9):1959–1968.
Kulkarni KH, Monjok EM, Zeyssig R, Kouamou G, Bongmba ON, Opere CA, Njie
YF, Ohia SE. Effect of hydrogen sulfide on sympathetic neurotransmission
and catecholamine levels in isolated porcine iris-ciliary body.
Neurochem Res. 2009;34(3):400-6.
Kunutsor SK, Laukkanen JA. Renal complications in COVID-19: a systematic
review and meta-analysis. Ann Med. 2020;52(7):345–353.
La Milia V, Bacchini G., Bigi MC, et al. COVID-19 Outbreak in a Large
Hemodialysis Center in Lombardy, Italy. Kidney Int.
2020;5(7):1095–1099.
Larsen CP, Bourne TD, Wilson JD, Saqqa O, Sharshir MdA.Collapsing Glomerulopathy in a Patient With Coronavirus Disease 2019
(COVID-19). Kidney Int Rep. 2020;5(6):935-939.Menon R, Otto EA, Sealfon
R, et al. SARS-CoV-2 receptor networks in diabetic and
COVID-19–associated kidney disease. Kidney Int. 2020;98(6):1502–1518.
Li H, Ma Y, Escaffre O, Ivanciuc T, Komaravelli N, Kelley JP, Coletta C,
Szabo C, Rockx
B, Garofalo RP, Casola A. Role of hydrogen sulfide in paramyxovirus
infections. J Virol.
2015;89(10):5557-68.
Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, et al.
Characterization of a novel, water-soluble hydrogen sulfide-releasing
molecule (GYY4137): new insights into the biology of hydrogen sulfide.
Circulation. 2008;117:2351e2360.
Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD.
Anti-SARS
coronavirus 3C-like protease effects of Isatis indigotica root
and plant-derived phenolic
compounds. Antiviral Res. 2005;68(1):36-42.
Lin F, Liao C, Sun Y, et al. Hydrogen sulfide inhibits cigarette
smoke-induced endoplasmic
reticulum stress and apoptosis in bronchial epithelial cells. Front
Pharmacol. 2017;8:675.
Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen sulfide attenuates
atherosclerosis in a
partially ligated carotid artery mouse model via regulating angiotensin
converting enzyme 2
expression. Front Physiol. 2017;8:782.
Liu Y., Wang M., Luo G., et al. Experience of N-acetylcysteine airway
management in the
successful treatment of one case of critical condition with COVID-19: a
case report.
Medicine (Baltimore) 2020;99(42):e22577.
Lobb I, Zhu J, Liu W, Haig A, Lan Z, Sener A. Hydrogen sulfide treatment
improves long-
term renal dysfunction resulting from prolonged warm renal
ischemia-reperfusion injury.
Canadian Urological Association Journal. 2014;8(5-6):413.
Lu X, Li W, Wang G, Wang Q, Jiang Y, Gao J, Zhao X, Xu L. Effect of
hydrogen sulfide on
tissue factor-induced disseminated intravascular coagulation in rabbits.
Zhonghua Wei Zhong
Bing Ji Jiu Yi Xue. 2015;27(2):92-6.
Manček-Keber M, Hafner-Bratkovič I, Lainšček D, et al. Disruption of
disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and
represents a target for viral entry inhibition by registered drugs.
FASEB J. 2021;35(6):e21651.
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic
Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal.
2020;32(2):110-144.
Mihalopoulos M, Dogra N, Mohamed N, et al. COVID-19 and Kidney Disease:
Molecular Determinants and Clinical Implications in Renal Cancer. Eur
Urol Focus. 2020;6(5):1086–1096.
Mikami Y, Shinuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H.
Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate
sulfurtransferase to produce hydrogen sulfide, Biochem. J.
2011;439:479e485.
Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C.
Intramitochondrial hydrogen sulfide production by 3-mecaptopyruvate
sulfurtransferase maintains mitochondrial electron transport flow and
supports cellular biogenesis, FASEB J. 2013;27:601e611.
Mohamed MMB, Lukitsch I, Torres-Ortiz AE, Walker JB, Varghese V,
Hernandez-Arroyo CF, et al. Acute Kidney Injury Associated with
Coronavirus Disease 2019 in Urban New Orleans. Kidney360.
2020;1(7):614-622.
Mukherjee A, Ghosh R, Furment MM. Case Report: COVID-19 Associated Renal
Infarction and Ascending Aortic Thrombosis. Am J Trop Med Hyg.
2020;103(5):1989–1992.
Naaraayan A, Nimkar A, Hasan A, et al. End-Stage Renal Disease Patients
on Chronic Hemodialysis Fare Better With COVID-19: A Retrospective
Cohort Study From the New York Metropolitan Region. Cureus.
2020;12(9):e10373.
Ng JH, Bijol V, Sparks MA, et al. Pathophysiology and Pathology of Acute
Kidney Injury in Patients With COVID-19. Adv Chronic Kidney Dis.
2020;27(5):365–376.
Ng JH, Hirsch JS. Wanchoo R, et al. Outcomes of patients with end-stage
kidney disease hospitalized with COVID-19. Kidney Int.
2020;98(6):1530–1539.
Nichols B, Jog P, Lee JH, Blackler D,WilmotM, D’Agati V, et al.: Innate
immunity pathways regulate the nephropathy gene Apolipoprotein L1.
Kidney Int. 2015;87:332–342.
Ofori-Asenso R, Ogundipe O, Adom Agyeman A, et al. Cancer is associated
with severe disease in COVID-19 patients: a systematic review and
meta-analysis. Ecancermedicalscience. 2020; 14:1–10.
Ortega-Paz, L, Capodanno D, Montalescot G, et al. Coronavirus Disease
2019–Associated Thrombosis and Coagulopathy: Review of the
Pathophysiological Characteristics and Implications for Antithrombotic
Management. J Am Heart Assoc. 2021;10(3):e019650.
Pacheco A. Sulfur-containing compounds as hydrogen sulfide donors and
broad-spectrum
antiviral agents. Washington State University. ProQuest Dissertations
Publishing. 2017;
10285521.
Pal R, Bhansali A. COVID-19, diabetes mellitus and ACE2: The conundrum.
Diabetes Res Clin Pract. 2020;162:1–3.
Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, Di
Francesco P,
Favalli C, Rotilio G, Garaci E. Evidence for antiviral activity of
glutathione: in vitro
inhibition of herpes simplex virus type 1 replication. Antiviral Res.
1995;27(3):237-53.
Palmeira A, Sousa E, Köseler A, et al. Preliminary virtual screening
studies to identify GRP78 inhibitors which may interfere with SARS-CoV-2
infection. Pharmaceuticals (Basel) 2020;13(6):132.
Pan XW, Xu D, Zhang H, Wang Z, Wang LH, Cui XG. Identification of a
potential mechanism of acute kidney injury during the COVID-19 outbreak:
a study based on single-cell transcriptome analysis. Intensive Care Med.
2020;31:1-3.
Pei G, Zhang Z, Peng J, et al. Renal Involvement and Early Prognosis in
Patients with COVID-19 Pneumonia. J Am Soc Nephrol.
2020;31(6):1157–1165.
Peleg Y, Kudose S, D’Agati V, Siddall E, Ahmad S, Kisselev S, et al.
Acute Kidney Injury Due to Collapsing Glomerulopathy Following COVID-19
Infection. Kidney Int Rep. 2020;5(6):940-945.
Perico L, Benigni A, Remuzzi G. Should COVID-19 Concern Nephrologists?
Why and to What Extent? The Emerging Impasse of Angiotensin Blockade.
Nephron. 2020;144(5):213–221.
Pfister F, Vonbrunn E, Ries T, Jäck HM, Überla K, Lochnit G, Sheriff A,
Herrmann M,
Büttner-Herold M, Amann K, Daniel C. Complement activation in kidneys of
patients with
COVID-19. Front Immunol. 2021;11:594849.
Portolés J, Marques M, López-Sánchez P, et al. Chronic kidney disease
and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dialy
Transplant. 2020;35(8):1353-1361.
Porzionato A, Emmi A, Barbon S, et al. Sympathetic activation: a
potential link between comorbidities and COVID-19. FEBS J.
2020;287(17):3681–3688.
Post A, den Deurwaarder ESG, Bakker SJL, et al. Kidney Infarction in
Patients With COVID-19. Am J Kidney Dis. 2020;76(3):431–435.
Puyo C, Kreig D, Saddi V, Ansari E, and Prince O. Case report: use of
hydroxychloroquine and N-acetylcysteine for treatment of a COVID-19
positive patient. F1000Research 2020;9:491.
Qian JY, Wang B, Liu BC. Acute Kidney Injury in the 2019 Novel
Coronavirus Disease. Kidney Dis. 2020;6(5):318–323.
Rapkiewicz AV, Mai X, Carsons SE, et al. Megakaryocytes and
platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy
in COVID-19: A case series. EClinicalMedicine. 2020;24:1–9.
Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C,
Kyriakopoulou M,
Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ. Serum
hydrogen sulfide
and outcome association in pneumonia by the SARS-CoV-2 coronavirus.
Shock.
2020;54(5):633-637.
Robbins-Juarez SY, Qian L, King KL, et al. Outcomes for Patients With
COVID-19 and Acute Kidney Injury: A Systematic Review and Meta-Analysis.
Kidney Int. Rep. 2020;5(8):1149–1160.
Sallenave JM, Guillot L. Innate immune signaling and proteolytic
pathways in the resolution or exacerbation of SARS-CoV-2 in Covid-19:
key therapeutic targets? Front Immunol. 2020;11:1229.
Salvi A, Bankhele P, Jamil JM, Kulkarni-Chitnis M, Njie-Mbye YF, Ohia
SE, Opere CA. Pharmacological Actions of Hydrogen Sulfide Donors on
Sympathetic Neurotransmission in the Bovine Anterior Uvea, In Vitro.
Neurochem Res. 2016;41(5):1020-8.
Shibuya N, Koike S, Tanaka M, et al. A novel pathway for the production
of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun.
2013;4:1366.
Srivastava A, Patel HV, Kim S, et al. Delaying surgery for clinical
T1b-T2bN0M0 renal cell carcinoma: Oncologic implications in the COVID-19
era and beyond. J Clin Oncol. 2021;39(6):283–283.
Strazzula L, Nigwekar SU, Steele D, et al. Intralesional sodium
thiosulfate for the treatment
of calciphylaxis. JAMA Dermatol. 2013;149(8):946-949.
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26
postmortem findings of patients with COVID-19 in China. Kidney Int.
2020;98(1):219–227.
Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in
cardiovascular diseases: the link between inflammation and hydrogen
sulfide. Front Pharmacol. 2020;10:1568.
Swai J. Mortality rate of acute kidney injury in SARS, MERS, and
COVID-19 infection: a systematic review and meta-analysis. Crit Care.
2020;24(1):555.
Taher A, Alalwan AA, Naser N, Alsegai O, Alaradi A. Acute Kidney Injury
in COVID-19 Pneumonia: A Single-Center Experience in Bahrain. Cureus.
2020;12:1–14.
Tayo BO, Kramer H, Salako BL, Gottesman O, McKenzie CA, Ogunniyi A, et
al. Genetic variation in APOL1 and MYH9 genes is associated with chronic
kidney disease among Nigerians. Int Urol Nephrol. 2013;45(2):485-94.
Tomita M, Nagahara N, Ito T. Expression of 3-mecaptopyruvate
sulfurtransferase in the mouse. Molecules. 2016;21(12):1707.
Tripathi SC, Deshmukh V, Creighton CJ, et al. Renal Carcinoma Is
Associated With Increased Risk of Coronavirus Infections. Front Mol
Biosci. 2020;7:1–12.
Ulasi, II, Tzur S, Wasser WG, Shemer R, Kruzel E, Feigin E, et al. High
population frequencies of APOL1 risk variants are associated with
increased prevalence of non-diabetic chronic kidney disease in the Igbo
people from south-eastern Nigeria. Nephron Clin Pract.
2013;123(1-2):123-8.
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and
endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418.
Velavan TP, Meyer CG. The COVID‐19 epidemic. Trop Med Int Health.
2020;25(3):278-280.
Wang R. Two’s company, three’s a crowd: Can H2S be the
third endogenous gaseous
transmitter? FASEB J. 2002;16(13):1792-8.
Wald R, Bagshaw SM. COVID-19–Associated Acute Kidney Injury: Learning
from the First Wave. J Am Soc Nephrol. 2020;32(1):4–6.
Wallis CJD, Novara G, Marandino L, et al. Risks from Deferring Treatment
for Genitourinary Cancers: A Collaborative Review to Aid Triage and
Management During the COVID-19 Pandemic. Eur Urol. 2020;78(1):29–42.
Wan C, Zhang C. Kidney injury molecule-1: a novel entry factor for
SARS-CoV-2. J Mol Cell Biol. 2021;13(3):159–160.
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively
inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.
Cell Res. 2020;30(3):269–271.
Wei H, Zhang R, Jin H, et al. Hydrogen sulfide attenuates
hyperhomocysteinemia-induced cardiomyocytic endoplasmic reticulum stress
in rats. Antioxid Redox Signal. 2010;12(9):1079–1091.
Wu J, Deng W, Li S, et al. Advances in research on ACE2 as a receptor
for 2019-nCoV. Cell Mol Life Sci. 2021;78(2):531–544.
Xia M, Chen L, Muh RW, Li PL, Li N. Production and action of hydrogen
sulfide, a novel gaseous bioactive substance in the kidneys, J.
Pharmacol. Exp. Ther. 2009;329:1056e1062.
Yamamoto J, Sato W, Kosugi T, Yamamoto T, Kimura T, Taniguchi S, et al.
Distribution of hydrogen sulfide (H2S)-producing enzymes
and the roles of the H2S donor sodium hydrosulfide in diabetic
nephropathy. Clin Exp Neph-rol. 2013;17(1):32–40.
Yang C, Zhang Y, Zeng X, et al. Kidney injury molecule-1 is a potential
receptor for SARS-
CoV-2. J Mol Cell Biol. 2021;13(3):185–196.
Yang J, Minkler P, Grove D, Wang R, Willard B, Dweik R, Hine C.
Non-enzymatic
hydrogen sulfide production from cysteine in blood is catalyzed by iron
and vitamin B(6).
Commun Biol. 2019;2:194.
Yang L, Liu S, Liu J, et al. COVID-19: immunopathogenesis and
Immunotherapeutics. Signal Transduct Target Ther. 2020;5(1):128.
Yi J, Yuan Y, Zheng J, Hu N. Hydrogen sulfide alleviates uranium-induced
kidney cell apoptosis
mediated by ER stress via 20S proteasome involving in
Akt/GSK-3β/Fyn-Nrf2 signaling.
Free Radic Res. 2018;52(9):1020–1029.
Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY, Liu YJ, Wang CN. H2S
Attenuates
LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and
Inflammation.
Cell Physiol Biochem. 2016;40(6):1603-1612.
Zhen H, Fang F, Ye DY, Shu SN, Zhou YF, Dong YS, Nie XC, Li G.
Experimental study on
the action of allitridin against human cytomegalovirus in vitro:
Inhibitory effects on
immediate-early genes. Antiviral Res. 2006;72(1):68-74.