References
1. Zhou, P., X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, et al.,Addendum: A pneumonia outbreak associated with a new coronavirus
of probable bat origin. Nature, 2020. 588 (7836): p. E6.
2. Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al.,Clinical features of patients infected with 2019 novel coronavirus
in Wuhan, China. Lancet, 2020. 395 (10223): p. 497-506.
3. Lai, C.C., T.P. Shih, W.C. Ko, H.J. Tang, and P.R. Hsueh,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int J Antimicrob Agents, 2020. 55 (3): p. 105924.
4. Dong, E., H. Du, and L. Gardner, An interactive web-based
dashboard to track COVID-19 in real time. Lancet Infect Dis, 2020.20 (5): p. 533-534.
5. Chua, G.T., J.S.C. Wong, I. Lam, P.P.K. Ho, W.H. Chan, F.Y.S. Yau, et
al., Clinical Characteristics and Transmission of COVID-19 in
Children and Youths During 3 Waves of Outbreaks in Hong Kong. JAMA Netw
Open, 2021. 4 (5): p. e218824.
6. Liu, Y., B. Mao, S. Liang, J.W. Yang, H.W. Lu, Y.H. Chai, et al.,Association between age and clinical characteristics and outcomes
of COVID-19. Eur Respir J, 2020. 55 (5).
7. Takagi, H., Risk and protective factors of SARS-CoV-2
infection. J Med Virol, 2021. 93 (2): p. 649-651.
8. Du, R.H., L.R. Liang, C.Q. Yang, W. Wang, T.Z. Cao, M. Li, et al.,Predictors of mortality for patients with COVID-19 pneumonia
caused by SARS-CoV-2: a prospective cohort study. Eur Respir J, 2020.55 (5).
9. Wu, C., X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, et al., Risk
Factors Associated With Acute Respiratory Distress Syndrome and Death in
Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA
Intern Med, 2020. 180 (7): p. 934-943.
10. Palaiodimos, L., D.G. Kokkinidis, W. Li, D. Karamanis, J. Ognibene,
S. Arora, W.N. Southern, and C.S. Mantzoros, Severe obesity,
increasing age and male sex are independently associated with worse
in-hospital outcomes, and higher in-hospital mortality, in a cohort of
patients with COVID-19 in the Bronx, New York. Metabolism, 2020.108 : p. 154262.
11. Lu, X., L. Zhang, H. Du, J. Zhang, Y.Y. Li, J. Qu, et al.,SARS-CoV-2 Infection in Children. N Engl J Med, 2020.382 (17): p. 1663-1665.
12. Wu, Z. and J.M. McGoogan, Characteristics of and Important
Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China:
Summary of a Report of 72314 Cases From the Chinese Center for Disease
Control and Prevention. JAMA, 2020. 323 (13): p. 1239-1242.
13. Yasuhara, J., T. Kuno, H. Takagi, and N. Sumitomo, Clinical
characteristics of COVID-19 in children: A systematic review. Pediatr
Pulmonol, 2020. 55 (10): p. 2565-2575.
14. Gotzinger, F., B. Santiago-Garcia, A. Noguera-Julian, M. Lanaspa, L.
Lancella, F.I. Calo Carducci, et al., COVID-19 in children and
adolescents in Europe: a multinational, multicentre cohort study.Lancet Child Adolesc Health, 2020. 4 (9): p. 653-661.
15. Chua, G.T., X. Xiong, E.H. Choi, M.S. Han, S.H. Chang, B.L. Jin, et
al., COVID-19 in children across three Asian cosmopolitan
regions. Emerg Microbes Infect, 2020. 9 (1): p. 2588-2596.
16. Xiong, X., G.T. Chua, S. Chi, M.Y.W. Kwan, W.H. Sang Wong, A. Zhou,
et al., A Comparison Between Chinese Children Infected with
Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome
2003. J Pediatr, 2020. 224 : p. 30-36.
17. Chen, G., D. Wu, W. Guo, Y. Cao, D. Huang, H. Wang, et al.,Clinical and immunological features of severe and moderate
coronavirus disease 2019. J Clin Invest, 2020. 130 (5): p.
2620-2629.
18. He, R., Z. Lu, L. Zhang, T. Fan, R. Xiong, X. Shen, et al.,The clinical course and its correlated immune status in COVID-19
pneumonia. J Clin Virol, 2020. 127 : p. 104361.
19. Weiskopf, D., K.S. Schmitz, M.P. Raadsen, A. Grifoni, N.M.A. Okba,
H. Endeman, et al., Phenotype and kinetics of SARS-CoV-2-specific
T cells in COVID-19 patients with acute respiratory distress syndrome.Sci Immunol, 2020. 5 (48).
20. Zheng, M., Y. Gao, G. Wang, G. Song, S. Liu, D. Sun, Y. Xu, and Z.
Tian, Functional exhaustion of antiviral lymphocytes in COVID-19
patients. Cell Mol Immunol, 2020. 17 (5): p. 533-535.
21. Guan, W.J., Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J.X. He, et al.,Clinical Characteristics of Coronavirus Disease 2019 in China. N
Engl J Med, 2020. 382 (18): p. 1708-1720.
22. Xiong, X., G.T. Chua, S. Chi, M.Y.W. Kwan, W.H.S. Wong, A. Zhou, et
al., Haematological and immunological data of Chinese children
infected with coronavirus disease 2019. Data Brief, 2020. 31 :
p. 105953.
23. Chua, G.T., J.S.C. Wong, K.K.W. To, I.C.S. Lam, F.Y.S. Yau, W.H.
Chan, et al., Saliva viral load better correlates with clinical
and immunological profiles in children with coronavirus disease 2019.Emerg Microbes Infect, 2021. 10 (1): p. 235-241.
24. Laing, A.G., A. Lorenc, I. Del Molino Del Barrio, A. Das, M. Fish,
L. Monin, et al., A dynamic COVID-19 immune signature includes
associations with poor prognosis. Nat Med, 2020. 26 (10): p.
1623-1635.
25. Rydyznski Moderbacher, C., S.I. Ramirez, J.M. Dan, A. Grifoni, K.M.
Hastie, D. Weiskopf, et al., Antigen-Specific Adaptive Immunity to
SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease
Severity. Cell, 2020. 183 (4): p. 996-1012 e19.
26. Grifoni, A., D. Weiskopf, S.I. Ramirez, J. Mateus, J.M. Dan, C.R.
Moderbacher, et al., Targets of T Cell Responses to SARS-CoV-2
Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.Cell, 2020. 181 (7): p. 1489-1501 e15.
27. Suthar, M.S., M. Zimmerman, R. Kauffman, G. Mantus, S. Linderman, A.
Vanderheiden, et al., Rapid generation of neutralizing antibody
responses in COVID-19 patients. medRxiv, 2020.
28. Long, Q.X., B.Z. Liu, H.J. Deng, G.C. Wu, K. Deng, Y.K. Chen, et
al., Antibody responses to SARS-CoV-2 in patients with COVID-19.Nat Med, 2020. 26 (6): p. 845-848.
29. Rodda, L.B., J. Netland, L. Shehata, K.B. Pruner, P.A. Morawski,
C.D. Thouvenel, et al., Functional SARS-CoV-2-Specific Immune
Memory Persists after Mild COVID-19. Cell, 2021. 184 (1): p.
169-183 e17.
30. Dan, J.M., J. Mateus, Y. Kato, K.M. Hastie, E.D. Yu, C.E. Faliti, et
al., Immunological memory to SARS-CoV-2 assessed for up to 8
months after infection. Science, 2021. 371 (6529).
31. Oja, A.E., A. Saris, C.A. Ghandour, N.A.M. Kragten, B.M. Hogema,
E.J. Nossent, et al., Divergent SARS-CoV-2-specific T- and B-cell
responses in severe but not mild COVID-19 patients. Eur J Immunol,
2020. 50 (12): p. 1998-2012.
32. Thieme, C.J., M. Anft, K. Paniskaki, A. Blazquez-Navarro, A.
Doevelaar, F.S. Seibert, et al., Robust T Cell Response Toward
Spike, Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated
with Recovery in Critical COVID-19 Patients. Cell Rep Med, 2020.1 (6): p. 100092.
33. Simon, A.K., G.A. Hollander, and A. McMichael, Evolution of
the immune system in humans from infancy to old age. Proc Biol Sci,
2015. 282 (1821): p. 20143085.
34. Liu, Y., Y. Wu, K.T. Lam, P.P. Lee, W. Tu, and Y.L. Lau,Dendritic and T cell response to influenza is normal in the
patients with X-linked agammaglobulinemia. J Clin Immunol, 2012.32 (3): p. 421-9.
35. Sullivan, G.M. and R. Feinn, Using Effect Size-or Why the P
Value Is Not Enough. J Grad Med Educ, 2012. 4 (3): p. 279-82.
36. Duvall, M.G., M.L. Precopio, D.A. Ambrozak, A. Jaye, A.J. McMichael,
H.C. Whittle, M. Roederer, S.L. Rowland-Jones, and R.A. Koup,Polyfunctional T cell responses are a hallmark of HIV-2
infection. Eur J Immunol, 2008. 38 (2): p. 350-63.
37. Prompetchara, E., C. Ketloy, and T. Palaga, Immune responses
in COVID-19 and potential vaccines: Lessons learned from SARS and MERS
epidemic. Asian Pac J Allergy Immunol, 2020. 38 (1): p. 1-9.
38. Zhao, J., J. Zhao, A.K. Mangalam, R. Channappanavar, C. Fett, D.K.
Meyerholz, et al., Airway Memory CD4(+) T Cells Mediate Protective
Immunity against Emerging Respiratory Coronaviruses. Immunity, 2016.44 (6): p. 1379-91.
39. Nelde, A., T. Bilich, J.S. Heitmann, Y. Maringer, H.R. Salih, M.
Roerden, et al., SARS-CoV-2-derived peptides define heterologous
and COVID-19-induced T cell recognition. Nat Immunol, 2021.22 (1): p. 74-85.
40. Altmann, D.M. and R.J. Boyton, SARS-CoV-2 T cell immunity:
Specificity, function, durability, and role in protection. Sci Immunol,
2020. 5 (49).
41. Carrillo, J., N. Izquierdo-Useros, C. Avila-Nieto, E. Pradenas, B.
Clotet, and J. Blanco, Humoral immune responses and neutralizing
antibodies against SARS-CoV-2; implications in pathogenesis and
protective immunity. Biochem Biophys Res Commun, 2021. 538 : p.
187-191.
42. Choe, P.G., K.H. Kim, C.K. Kang, H.J. Suh, E. Kang, S.Y. Lee, et
al., Antibody Responses 8 Months after Asymptomatic or Mild
SARS-CoV-2 Infection. Emerg Infect Dis, 2021. 27 (3): p.
928-931.
43. Gudbjartsson, D.F., G.L. Norddahl, P. Melsted, K. Gunnarsdottir, H.
Holm, E. Eythorsson, et al., Humoral Immune Response to SARS-CoV-2
in Iceland. N Engl J Med, 2020. 383 (18): p. 1724-1734.
44. Ibarrondo, F.J., J.A. Fulcher, D. Goodman-Meza, J. Elliott, C.
Hofmann, M.A. Hausner, et al., Rapid Decay of Anti-SARS-CoV-2
Antibodies in Persons with Mild Covid-19. N Engl J Med, 2020.383 (11): p. 1085-1087.
45. Iyer, A.S., F.K. Jones, A. Nodoushani, M. Kelly, M. Becker, D.
Slater, et al., Persistence and decay of human antibody responses
to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19
patients. Sci Immunol, 2020. 5 (52).
46. Perreault, J., T. Tremblay, M.J. Fournier, M. Drouin, G.
Beaudoin-Bussieres, J. Prevost, et al., Waning of SARS-CoV-2 RBD
antibodies in longitudinal convalescent plasma samples within 4 months
after symptom onset. Blood, 2020. 136 (22): p. 2588-2591.
47. Tan, Y., F. Liu, X. Xu, Y. Ling, W. Huang, Z. Zhu, et al.,Durability of neutralizing antibodies and T-cell response post
SARS-CoV-2 infection. Front Med, 2020. 14 (6): p. 746-751.
48. The Government of the Hong Kong Special Administrative Region.Early Vaccination for ALL . 2021; Available from:
https://www.covidvaccine.gov.hk/en/faq#FAQ_A.
49. Ding, Y., L. Zhou, Y. Xia, W. Wang, Y. Wang, L. Li, et al.,Reference values for peripheral blood lymphocyte subsets of
healthy children in China. J Allergy Clin Immunol, 2018.142 (3): p. 970-973 e8.
50. Chen, S.F., W.W. Tu, M.A. Sharp, E.C. Tongson, X.S. He, H.B.
Greenberg, et al., Antiviral CD8 T cells in the control of primary
human cytomegalovirus infection in early childhood. J Infect Dis, 2004.189 (9): p. 1619-27.