References
1. Zhou, P., X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, et al.,Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020. 588 (7836): p. E6.
2. Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al.,Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020. 395 (10223): p. 497-506.
3. Lai, C.C., T.P. Shih, W.C. Ko, H.J. Tang, and P.R. Hsueh,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges.Int J Antimicrob Agents, 2020. 55 (3): p. 105924.
4. Dong, E., H. Du, and L. Gardner, An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis, 2020.20 (5): p. 533-534.
5. Chua, G.T., J.S.C. Wong, I. Lam, P.P.K. Ho, W.H. Chan, F.Y.S. Yau, et al., Clinical Characteristics and Transmission of COVID-19 in Children and Youths During 3 Waves of Outbreaks in Hong Kong. JAMA Netw Open, 2021. 4 (5): p. e218824.
6. Liu, Y., B. Mao, S. Liang, J.W. Yang, H.W. Lu, Y.H. Chai, et al.,Association between age and clinical characteristics and outcomes of COVID-19. Eur Respir J, 2020. 55 (5).
7. Takagi, H., Risk and protective factors of SARS-CoV-2 infection. J Med Virol, 2021. 93 (2): p. 649-651.
8. Du, R.H., L.R. Liang, C.Q. Yang, W. Wang, T.Z. Cao, M. Li, et al.,Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J, 2020.55 (5).
9. Wu, C., X. Chen, Y. Cai, J. Xia, X. Zhou, S. Xu, et al., Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med, 2020. 180 (7): p. 934-943.
10. Palaiodimos, L., D.G. Kokkinidis, W. Li, D. Karamanis, J. Ognibene, S. Arora, W.N. Southern, and C.S. Mantzoros, Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism, 2020.108 : p. 154262.
11. Lu, X., L. Zhang, H. Du, J. Zhang, Y.Y. Li, J. Qu, et al.,SARS-CoV-2 Infection in Children. N Engl J Med, 2020.382 (17): p. 1663-1665.
12. Wu, Z. and J.M. McGoogan, Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020. 323 (13): p. 1239-1242.
13. Yasuhara, J., T. Kuno, H. Takagi, and N. Sumitomo, Clinical characteristics of COVID-19 in children: A systematic review. Pediatr Pulmonol, 2020. 55 (10): p. 2565-2575.
14. Gotzinger, F., B. Santiago-Garcia, A. Noguera-Julian, M. Lanaspa, L. Lancella, F.I. Calo Carducci, et al., COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study.Lancet Child Adolesc Health, 2020. 4 (9): p. 653-661.
15. Chua, G.T., X. Xiong, E.H. Choi, M.S. Han, S.H. Chang, B.L. Jin, et al., COVID-19 in children across three Asian cosmopolitan regions. Emerg Microbes Infect, 2020. 9 (1): p. 2588-2596.
16. Xiong, X., G.T. Chua, S. Chi, M.Y.W. Kwan, W.H. Sang Wong, A. Zhou, et al., A Comparison Between Chinese Children Infected with Coronavirus Disease-2019 and with Severe Acute Respiratory Syndrome 2003. J Pediatr, 2020. 224 : p. 30-36.
17. Chen, G., D. Wu, W. Guo, Y. Cao, D. Huang, H. Wang, et al.,Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest, 2020. 130 (5): p. 2620-2629.
18. He, R., Z. Lu, L. Zhang, T. Fan, R. Xiong, X. Shen, et al.,The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol, 2020. 127 : p. 104361.
19. Weiskopf, D., K.S. Schmitz, M.P. Raadsen, A. Grifoni, N.M.A. Okba, H. Endeman, et al., Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome.Sci Immunol, 2020. 5 (48).
20. Zheng, M., Y. Gao, G. Wang, G. Song, S. Liu, D. Sun, Y. Xu, and Z. Tian, Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol, 2020. 17 (5): p. 533-535.
21. Guan, W.J., Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J.X. He, et al.,Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020. 382 (18): p. 1708-1720.
22. Xiong, X., G.T. Chua, S. Chi, M.Y.W. Kwan, W.H.S. Wong, A. Zhou, et al., Haematological and immunological data of Chinese children infected with coronavirus disease 2019. Data Brief, 2020. 31 : p. 105953.
23. Chua, G.T., J.S.C. Wong, K.K.W. To, I.C.S. Lam, F.Y.S. Yau, W.H. Chan, et al., Saliva viral load better correlates with clinical and immunological profiles in children with coronavirus disease 2019.Emerg Microbes Infect, 2021. 10 (1): p. 235-241.
24. Laing, A.G., A. Lorenc, I. Del Molino Del Barrio, A. Das, M. Fish, L. Monin, et al., A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med, 2020. 26 (10): p. 1623-1635.
25. Rydyznski Moderbacher, C., S.I. Ramirez, J.M. Dan, A. Grifoni, K.M. Hastie, D. Weiskopf, et al., Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020. 183 (4): p. 996-1012 e19.
26. Grifoni, A., D. Weiskopf, S.I. Ramirez, J. Mateus, J.M. Dan, C.R. Moderbacher, et al., Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals.Cell, 2020. 181 (7): p. 1489-1501 e15.
27. Suthar, M.S., M. Zimmerman, R. Kauffman, G. Mantus, S. Linderman, A. Vanderheiden, et al., Rapid generation of neutralizing antibody responses in COVID-19 patients. medRxiv, 2020.
28. Long, Q.X., B.Z. Liu, H.J. Deng, G.C. Wu, K. Deng, Y.K. Chen, et al., Antibody responses to SARS-CoV-2 in patients with COVID-19.Nat Med, 2020. 26 (6): p. 845-848.
29. Rodda, L.B., J. Netland, L. Shehata, K.B. Pruner, P.A. Morawski, C.D. Thouvenel, et al., Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021. 184 (1): p. 169-183 e17.
30. Dan, J.M., J. Mateus, Y. Kato, K.M. Hastie, E.D. Yu, C.E. Faliti, et al., Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021. 371 (6529).
31. Oja, A.E., A. Saris, C.A. Ghandour, N.A.M. Kragten, B.M. Hogema, E.J. Nossent, et al., Divergent SARS-CoV-2-specific T- and B-cell responses in severe but not mild COVID-19 patients. Eur J Immunol, 2020. 50 (12): p. 1998-2012.
32. Thieme, C.J., M. Anft, K. Paniskaki, A. Blazquez-Navarro, A. Doevelaar, F.S. Seibert, et al., Robust T Cell Response Toward Spike, Membrane, and Nucleocapsid SARS-CoV-2 Proteins Is Not Associated with Recovery in Critical COVID-19 Patients. Cell Rep Med, 2020.1 (6): p. 100092.
33. Simon, A.K., G.A. Hollander, and A. McMichael, Evolution of the immune system in humans from infancy to old age. Proc Biol Sci, 2015. 282 (1821): p. 20143085.
34. Liu, Y., Y. Wu, K.T. Lam, P.P. Lee, W. Tu, and Y.L. Lau,Dendritic and T cell response to influenza is normal in the patients with X-linked agammaglobulinemia. J Clin Immunol, 2012.32 (3): p. 421-9.
35. Sullivan, G.M. and R. Feinn, Using Effect Size-or Why the P Value Is Not Enough. J Grad Med Educ, 2012. 4 (3): p. 279-82.
36. Duvall, M.G., M.L. Precopio, D.A. Ambrozak, A. Jaye, A.J. McMichael, H.C. Whittle, M. Roederer, S.L. Rowland-Jones, and R.A. Koup,Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur J Immunol, 2008. 38 (2): p. 350-63.
37. Prompetchara, E., C. Ketloy, and T. Palaga, Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol, 2020. 38 (1): p. 1-9.
38. Zhao, J., J. Zhao, A.K. Mangalam, R. Channappanavar, C. Fett, D.K. Meyerholz, et al., Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity, 2016.44 (6): p. 1379-91.
39. Nelde, A., T. Bilich, J.S. Heitmann, Y. Maringer, H.R. Salih, M. Roerden, et al., SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol, 2021.22 (1): p. 74-85.
40. Altmann, D.M. and R.J. Boyton, SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection. Sci Immunol, 2020. 5 (49).
41. Carrillo, J., N. Izquierdo-Useros, C. Avila-Nieto, E. Pradenas, B. Clotet, and J. Blanco, Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem Biophys Res Commun, 2021. 538 : p. 187-191.
42. Choe, P.G., K.H. Kim, C.K. Kang, H.J. Suh, E. Kang, S.Y. Lee, et al., Antibody Responses 8 Months after Asymptomatic or Mild SARS-CoV-2 Infection. Emerg Infect Dis, 2021. 27 (3): p. 928-931.
43. Gudbjartsson, D.F., G.L. Norddahl, P. Melsted, K. Gunnarsdottir, H. Holm, E. Eythorsson, et al., Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med, 2020. 383 (18): p. 1724-1734.
44. Ibarrondo, F.J., J.A. Fulcher, D. Goodman-Meza, J. Elliott, C. Hofmann, M.A. Hausner, et al., Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med, 2020.383 (11): p. 1085-1087.
45. Iyer, A.S., F.K. Jones, A. Nodoushani, M. Kelly, M. Becker, D. Slater, et al., Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol, 2020. 5 (52).
46. Perreault, J., T. Tremblay, M.J. Fournier, M. Drouin, G. Beaudoin-Bussieres, J. Prevost, et al., Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. Blood, 2020. 136 (22): p. 2588-2591.
47. Tan, Y., F. Liu, X. Xu, Y. Ling, W. Huang, Z. Zhu, et al.,Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Front Med, 2020. 14 (6): p. 746-751.
48. The Government of the Hong Kong Special Administrative Region.Early Vaccination for ALL . 2021; Available from: https://www.covidvaccine.gov.hk/en/faq#FAQ_A.
49. Ding, Y., L. Zhou, Y. Xia, W. Wang, Y. Wang, L. Li, et al.,Reference values for peripheral blood lymphocyte subsets of healthy children in China. J Allergy Clin Immunol, 2018.142 (3): p. 970-973 e8.
50. Chen, S.F., W.W. Tu, M.A. Sharp, E.C. Tongson, X.S. He, H.B. Greenberg, et al., Antiviral CD8 T cells in the control of primary human cytomegalovirus infection in early childhood. J Infect Dis, 2004.189 (9): p. 1619-27.