References
Albaugh, T. J., Fox, T. R., Maier, C. A., Campoe, O. C., Rubilar, R. A., Cook, R. L., Raymond, J. E., Alvares, C. A., Stape, J. L. (2018). A common garden experiment examining light use efficiency and heat sum to explain growth differences in native and exotic Pinus taeda .Forest Ecology and Management , 425 , 35-44.https://doi.org/10.1016/j.foreco.2018.05.033
Andrés, F., & Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nature Review Genetics , 13 (9), 627-639.https://doi.org/10.1038/nrg3291
Ashworth, M. B., Walsh, M. J., Flower, K. C., Vila-Aiub, M. M., & Powles, S. B. (2016). Directional selection for flowering time leads to adaptive evolution in Raphanus raphanistrum (Wild radish).Evolutionary Applications , 9 (4), 619-629.https://doi.org/10.1111/eva.12350
Baucom, R. S. (2019). Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? New Phytologist , 223 (1), 68-82.https://doi.org/10.1111/nph.15723
Blalock, H.M. (1972) Social statistics . New York: McGraw-Hill.
Capovilla, G., Schmid, M., & Pose, D. (2015). Control of flowering by ambient temperature. Journal of Experimental Botany ,66 (1), 59-69.https://doi.org/10.1093/jxb/eru416
Cabej, N. R. (2019). Epigenetics of Sympatric Speciation—Speciation as a Mechanism of Evolution . In Epigenetic Principles of Evolution (pp. 563-646). USA: Academic Press.https://doi.org/10.1016/B978-0-12-814067-3.00013-2
de Villemereuil, P., Gaggiotti, O. E., Mouterde, M., & Till-Bottraud, I. (2016). Common garden experiments in the genomic era: new perspectives and opportunities. Heredity , 116 (3), 249-254.https://doi.org/10.1038/hdy.2015.93
de Villemereuil, P., Gaggiotti, O. E., Goudet, J., & Schwinning, S. (2020). Common garden experiments to study local adaptation need to account for population structure. Journal of Ecology .https://doi.org/10.1111/1365-2745.13528
Des Marais, D. L., Hernandez, K. M., & Juenger, T. E. (2013). Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annual Review of Ecology, Evolution, and Systematics , 44 (1), 5-29.https://doi.org/10.1146/annurev-ecolsys-110512-135806
Ding, Y., Shi, Y., & Yang, S. (2020). Molecular regulation of plant responses to environmental temperatures. Molecular Plant ,13 (4), 544-564.https://doi.org/10.1016/j.molp.2020.02.004
do Amaral, M. N., Arge, L. W., Benitez, L. C., Danielowski, R., Silveira, S. F., Farias Dda, R., … Braga, E. J. (2016). Comparative transcriptomics of rice plants under cold, iron, and salt stresses. Functional & Integrative Genomics , 16 (5), 567-579.
Franklin, K. A. (2009). Light and temperature signal crosstalk in plant development. Current Opinion in Plant Biology , 12 (1), 63-68.https://doi.org/10.1007/s10142-016-0507-y
Groot, M. P., Wagemaker, N., Ouborg, N. J., Verhoeven, K. J. F., & Vergeer, P. (2018). Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants. Ecology and Evolution , 8 (6), 3505-3517.https://doi.org/10.1002/ece3.3931
Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: effect on plant growth and development. Weather and Climate Extremes ,10 , 4-10.https://doi.org/10.1016/j.wace.2015.08.001
Hereford, J. (2009). A quantitative survey of local adaptation and fitness trade-offs. American Naturalist , 173 (5), 579-588.https://doi.org/10.1086/597611
Hussain, S., Khaliq, A., Ali B., Hussain, H. A., Qadir, T., & Hussain, S. (2019). Temperature extremes: impact on rice growth and development . In Plant Abiotic Stress Tolerance (pp. 153-172). Switzerland: Springer.
Jackson, S. D. (2009). Plant responses to photoperiod. New Phytologist , 181 (3), 517-531.https://doi.org/10.1111/j.1469-8137.2008.02681.x
Kim, D. H., & Sung, S. (2014). Genetic and epigenetic mechanisms underlying vernalization. Arabidopsis Book , 12 , e0171.https://doi.org/10.1199/tab.0171
Kim, J., Shon, J., Lee, C. K., Yang, W., Yoon, Y., Yang, W. H., Kim, Y. G., Lee, B.W. (2011). Relationship between grain filling duration and leaf senescence of temperate rice under high temperature. Field Crops Research , 122 (3), 207-213.https://doi.org/10.1016/j.fcr.2011.03.014
Kong, H., Wang, Z., Guo, J. Y., Xia, Q. Y., Zhao, H., Zhang, Y. L., Guo, A. P., Lu, B. R. (2021). Increases in genetic diversity of WR associated with ambient temperatures and limited gene flow. Biology ,10 (2), 71.https://doi.org/10.3390/biology10020071
Körner, C. (2006). Significance of temperature in plant life . In Plant growth and climate change (pp. 48-66). UK: Blackwell Publishing Ltd.
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy, V. R. (2011). High-temperature effects on rice growth, yield, and grain quality.Advances in Agronomy , 111 :87-206.https://doi.org/10.1016/B978-0-12-387689-8.00004-7
Kubota, A., Kita, S., Ishizaki, K., Nishihama, R., Yamato, K. T., & Kohchi, T. (2014). Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communication ,5 , 3668.https://doi.org/10.1038/ncomms4668
Mcneilly, T., & Antonovics, J. (1968). Evolution in closely adjacent plant populations iv. barriers to gene flow. Heredity ,23 (2), 205-218.https://doi.org/10.1038/hdy.1968.29
Mahaut, L., Cheptou, P. O., Fried, G., Munoz, F., Storkey, J., Vasseur, F., Violle, C., Bretagnolle, F. (2020). Weeds: against the rules?Trends in Plant Science , 25 (11), 1107-1116.
Nosil, P., Harmon, L. J., & Seehausen, O. (2009). Ecological explanations for (incomplete) speciation. Trends in Ecology & Evolution , 24 (3), 145-156.https://doi.org/10.1016/j.tplants.2020.05.013
Osborne, O. G., Kafle, T., Brewer, T., Dobreva, M. P., Hutton, I., & Savolainen, V. (2020). Sympatric speciation in mountain roses (Metrosideros ) on an oceanic island. Philosophical transactions Royal Society Biological sciences , 375(1806), 20190542.https://doi.org/10.1098/rstb.2019.0542
Penfield, S. (2008). Temperature perception and signal transduction in plants. New Phytologist , 179 (3), 615-628.https://doi.org/10.1111/j.1469-8137.2008.02478.x
Peters, K., Breitsameter, L., & Gerowitt, B. (2014). Impact of climate change on weeds in agriculture: a review. Agronomy for Sustainable Development , 34 (4), 707-721.https://doi.org/10.1007/s13593-014-0245-2
Rahul, S., Bhadru, D. N., Sreedhar, M., & Vanisri, S. (2017). Screening of cold tolerant rice genotypes for seedling traits under low temperature regimes. International Journal of Current Microbiology and Applied Sciences , 6 (12), 4074-4081.https://doi.org/10.20546/ijcmas.2017.612.468
Savolainen, V., Anstett, M. C., Lexer, C., Hutton, I., Clarkson, J. J., Norup, M. V., Powell, M. P., Springate, D., Salamin, N., Baker, W. J. (2006). Sympatric speciation in palms on an oceanic island.Nature , 441 (7090), 210-213.https://doi.org/10.1038/nature04566
Sharifi, P. (2010). Evaluation on sixty-eight rice germplasms in cold tolerance at germination stage. Rice Science , 17 (1), 77-81.https://doi.org/10.1016/S1672-6308(08)60107-9
Song, Y., Gao, Z., & Luan, W. (2012). Interaction between temperature and photoperiod in regulation of flowering time in rice. Science China Life Sciences , 55 (3), 241-249.https://doi.org/10.1007/s11427-012-4300-4
van Boheemen, L. A., Atwater, D. Z., & Hodgins, K. A. (2019). Rapid and repeated local adaptation to climate in an invasive plant. New Phytologist , 222 (1), 614-627.https://doi.org/10.1111/nph.15564
Vigueira, C. C., Olsen, K. M., & Caicedo, A. L. (2013). The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.Heredity , 110 (4), 303-311.https://doi.org/10.1038/hdy.2012.104
Waser, N. M., & Campbell, D. R. (2004). Ecological Speciation in Flowering Plants. In Adaptive Speciation (pp. 264–277). UK: Cambridge University Press.
Wei, H., Wang, X., Xu, H., & Wang, L. (2020). Molecular basis of heading date control in rice. aBIOTECH , 1 (4), 219-232.https://doi.org/10.1007/s42994-020-00019-w
Xia, H. B., Xia, H., Ellstrand, N. C., Yang, C., & Lu, B. R. (2011). Rapid evolutionary divergence and ecotypic diversification of germination behavior in WR populations. New Phytologist ,191 (4), 1119-1127.https://doi.org/10.1111/j.1469-8137.2011.03766.x