References
Alexa, A., & Rahnenfuhrer, J. (2020). TOPGO: enrichment analysis for gene ontology 2.40. 0. R package version, 2 (0), 2010.
Batz, Z. A., Goff, A. C., & Armbruster, P. A. (2017). MicroRNAs are differentially abundant during Aedes albopictus diapause maintenance but not diapause induction. Insect molecular biology, 26 (6), 721-733.
Biggar, K. K., & Storey, K. B. (2018). Functional impact of microRNA regulation in models of extreme stress adaptation. Journal of molecular cell biology, 10 (2), 93-101.
Chen, J., Liang, Z., Liang, Y., Pang, R., & Zhang, W. (2013). Conserved microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in response to 20-hydroxyecdysone signaling in the brown planthopper, Nilaparvata lugens. Insect biochemistry and molecular biology, 43 (9), 839-848.
Denlinger, D. (2002). Regulation of diapause. Annual review of entomology, 47 (1), 93-122.
Denlinger, D. (2022). Insect diapause : Cambridge University Press.
Denlinger, D., Yocum, G., & Rinehart, J. (2012). Hormonal control of diapause. In Insect endocrinology (pp. 430-463): Elsevier.
Duan, T., Li, L., Tan, Y., Li, Y., & Pang, B. (2021). Identification and functional analysis of microRNAs in the regulation of summer diapause in Galeruca daurica. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 37 , 100786.
Duan, T. F., Li, L., Wang, H. C., & Pang, B. P. (2023). MicroRNA miR‐2765‐3p regulates reproductive diapause by targeting FoxO in Galeruca daurica. Insect Science, 30 (2), 279-292.
Enriquez, T., & Teets, N. M. (2023). Lipid Metabolism in Response to Cold.
Forsberg, J., & Wiklund, C. (1988). Protandry in the green-veined white butterfly, Pieris napi L.(Lepidoptera; Pieridae). Functional Ecology , 81-88.
Friedländer, Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., Knespel, S., & Rajewsky, N. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature biotechnology, 26 (4), 407-415.
Friedländer, Mackowiak, S. D., Li, N., Chen, W., & Rajewsky, N. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids research, 40 (1), 37-52.
Fruciano, C., Franchini, P., & Jones, J. C. (2021). Capturing the rapidly evolving study of adaptation. Journal of Evolutionary Biology, 34 (6), 856-865.
Gawienowski, A. M., Kessler, L. J., Tan, B. S., & Yin, C.-M. (1987). Glucocorticoid action on the growth and development of insects.Life sciences, 40 (17), 1725-1730.
Grossmann, S., Bauer, S., Robinson, P. N., & Vingron, M. (2007). Improved detection of overrepresentation of Gene-Ontology annotations with parent–child analysis. Bioinformatics, 23 (22), 3024-3031.
Gudmunds, E., Wheat, C. W., Khila, A., & Husby, A. (2022). Functional genomic tools for emerging model species. Trends in Ecology & Evolution .
Guerra-Assunção, J. A., & Enright, A. J. (2012). Large-scale analysis of microRNA evolution. BMC genomics, 13 , 1-12.
He, K., Xiao, H., Sun, Y., Situ, G., Xi, Y., & Li, F. (2019). microRNA-14 as an efficient suppressor to switch off ecdysone production after ecdysis in insects. RNA biology, 16 (9), 1313-1325.
Ivanovic, J. (2018). Hormones and metabolism in insect stress : CRC Press.
Jain, S., Rana, V., Tridibes, A., Sunil, S., & Bhatnagar, R. K. (2015). Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi. Parasites & vectors, 8 (1), 1-20.
Jin, X., Wu, X., Zhou, L., He, T., Yin, Q., & Liu, S. (2020). 20-Hydroxyecdysone-responsive microRNAs of insects. RNA biology, 17 (10), 1454-1471.
Kang, W., Eldfjell, Y., Fromm, B., Estivill, X., Biryukova, I., & Friedländer, M. R. (2018). miRTrace reveals the organismal origins of microRNA sequencing data. Genome biology, 19 (1), 1-15.
Kerr, G., Ruskin, H. J., Crane, M., & Doolan, P. (2008). Techniques for clustering gene expression data. Computers in biology and medicine, 38 (3), 283-293.
Koštál, V. (2006). Eco-physiological phases of insect diapause.Journal of insect physiology, 52 (2), 113-127.
Koštál, V., Šimůnková, P., Kobelková, A., & Shimada, K. (2009). Cell cycle arrest as a hallmark of insect diapause: changes in gene transcription during diapause induction in the drosophilid fly, Chymomyza costata. Insect biochemistry and molecular biology, 39 (12), 875-883.
Koštál, V., Štětina, T., Poupardin, R., Korbelová, J., & Bruce, A. W. (2017). Conceptual framework of the eco-physiological phases of insect diapause development justified by transcriptomic profiling.Proceedings of the National Academy of Sciences, 114 (32), 8532-8537.
Koštál, V. r., Berková, P., & Šimek, P. (2003). Remodelling of membrane phospholipids during transition to diapause and cold-acclimation in the larvae of Chymomyza costata (Drosophilidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135 (3), 407-419.
Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic acids research, 47 (D1), D155-D162.
Kumar, L., & Futschik, M. E. (2007). Mfuzz: a software package for soft clustering of microarray data. Bioinformation, 2 (1), 5.
Lees, E., & Archer, D. (1980). Diapause in various populations of Pieris napi L. from different parts of the British Isles [Ecology, genetics, photoperiodism]. Journal of Research on the Lepidoptera .
Lehmann, P., Pruisscher, P., Koštál, V., Moos, M., Šimek, P., Nylin, S., . . . Wheat, C. W. (2018). Metabolome dynamics of diapause in the butterfly Pieris napi: distinguishing maintenance, termination and post-diapause phases. Journal of Experimental Biology, 221 (2), jeb169508.
Lehmann, P., Pruisscher, P., Posledovich, D., Carlsson, M., Käkelä, R., Tang, P., . . . Gotthard, K. (2016). Energy and lipid metabolism during direct and diapause development in a pierid butterfly. Journal of Experimental Biology, 219 (19), 3049-3060.
Lehmann, P., Van Der Bijl, W., Nylin, S., Wheat, C. W., & Gotthard, K. (2017). Timing of diapause termination in relation to variation in winter climate. Physiological Entomology, 42 (3), 232-238.
Liu, Z., Ling, L., Xu, J., Zeng, B., Huang, Y., Shang, P., & Tan, A. (2018). MicroRNA-14 regulates larval development time in Bombyx mori.Insect biochemistry and molecular biology, 93 , 57-65.
Lohse, K., Hayward, A., Ebdon, S., of Life, W. S. I. T., & Consortium, D. T. o. L. (2021). The genome sequences of the male and female green-veined white, Pieris napi (Linnaeus, 1758). Wellcome Open Research, 6 .
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15 (12), 1-21.
Lozano, J., Montañez, R., & Belles, X. (2015). MiR-2 family regulates insect metamorphosis by controlling the juvenile hormone signaling pathway. Proceedings of the National Academy of Sciences, 112 (12), 3740-3745.
Lucas, K. J., Zhao, B., Liu, S., & Raikhel, A. S. (2015). Regulation of physiological processes by microRNAs in insects. Current opinion in insect science, 11 , 1-7.
Marco, A., Hooks, K., & Griffiths-Jones, S. (2012). Evolution and function of the extended miR-2 microRNA family. RNA biology, 9 (3), 242-248.
Meuti, M. E., Bautista-Jimenez, R., & Reynolds, J. A. (2018). Evidence that microRNAs are part of the molecular toolkit regulating adult reproductive diapause in the mosquito, Culex pipiens. PLoS One, 13 (11), e0203015.
Olena, A. F., & Patton, J. G. (2010). Genomic organization of microRNAs. Journal of cellular physiology, 222 (3), 540-545.
Pruisscher, P., Lehmann, P., Nylin, S., Gotthard, K., & Wheat, C. W. (2022). Extensive transcriptomic profiling of pupal diapause in a butterfly reveals a dynamic phenotype. Molecular ecology, 31 (4), 1269-1280.
Pruisscher, P., Nylin, S., Wheat, C. W., & Gotthard, K. (2021). A region of the sex chromosome associated with population differences in diapause induction contains highly divergent alleles at clock genes.Evolution, 75 (2), 490-500.
Quah, S., Hui, J. H., & Holland, P. W. (2015). A burst of miRNA innovation in the early evolution of butterflies and moths.Molecular biology and evolution, 32 (5), 1161-1174.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (26), 841-842.
R Core Team, R. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2020. In.
Ragland, G. J., Egan, S. P., Feder, J. L., Berlocher, S. H., & Hahn, D. A. (2011). Developmental trajectories of gene expression reveal candidates for diapause termination: a key life-history transition in the apple maggot fly Rhagoletis pomonella. Journal of Experimental Biology, 214 (23), 3948-3960.
Reynolds, J. A. (2019). Noncoding RNA regulation of dormant states in evolutionarily diverse animals. The Biological Bulletin, 237 (2), 192-209.
Reynolds, J. A., Nachman, R. J., & Denlinger, D. L. (2019). Distinct microRNA and mRNA responses elicited by ecdysone, diapause hormone and a diapause hormone analog at diapause termination in pupae of the corn earworm, Helicoverpa zea. General and comparative endocrinology, 278 , 68-78.
Reynolds, J. A., Peyton, J. T., & Denlinger, D. L. (2017). Changes in microRNA abundance may regulate diapause in the flesh fly, Sarcophaga bullata. Insect biochemistry and molecular biology, 84 , 1-14.
Rinehart, J. P., Cikra-Ireland, R. A., Flannagan, R. D., & Denlinger, D. L. (2001). Expression of ecdysone receptor is unaffected by pupal diapause in the flesh fly, Sarcophaga crassipalpis, while its dimerization partner, USP, is downregulated. Journal of insect physiology, 47 (8), 915-921.
Ritchie, W., Flamant, S., & Rasko, J. E. (2009). Predicting microRNA targets and functions: traps for the unwary. Nature methods, 6 (6), 397-398.
Robinson, M., McCarthy, D., & Bioinformatics, G. (2020). undefined. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. academic. In: oup. com. https://academic. oup. com/bioinformatics/article-abstract/26/1 ….
Rodríguez del Río, Á., Giner-Lamia, J., Cantalapiedra, C. P., Botas, J., Deng, Z., Hernández-Plaza, A., . . . Bork, P. (2022). Functional and evolutionary significance of unknown genes from uncultivated taxa.bioRxiv , 2022.2001. 2026.477801.
Rorbach, G., Unold, O., & Konopka, B. M. (2018). Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods. Scientific reports, 8 (1), 1-13.
Schnall-Levin, M., Zhao, Y., Perrimon, N., & Berger, B. (2010). Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′ UTRs. Proceedings of the National Academy of Sciences, 107 (36), 15751-15756.
Steward, R. A., Pruisscher, P., Roberts, K. T., & Wheat, C. W. (in review ). Genetic constraints in genes exhibiting splicing plasticity in facultative diapause
Su, Z., Wilson, B., Kumar, P., & Dutta, A. (2020). Noncanonical roles of tRNAs: tRNA fragments and beyond. Annual review of genetics, 54 , 47-69.
Süess, P., Dircksen, H., Roberts, K. T., Gotthard, K., Nässel, D. R., Wheat, C. W., . . . Lehmann, P. (2022). Time-and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi. Insect biochemistry and molecular biology, 149 , 103833.
Thatcher, E. J., Bond, J., Paydar, I., & Patton, J. G. (2008). Genomic organization of zebrafish microRNAs. BMC genomics, 9 , 1-9.
Wheat, C. W., Steward, R. A., Okamura, Y., Vogel, H., Lehmann, P., & Roberts, K. T. (in review ). Functional coherence among miRNA targets: a potential metric for assessing biological signal among target prediction methods in non-model species
Wienholds, E., & Plasterk, R. H. (2005). MicroRNA function in animal development. FEBS letters, 579 (26), 5911-5922.
Williams, C. M. (1952). Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the Cecropia silkworm.The Biological Bulletin, 103 (1), 120-138.
Wilsterman, K., Ballinger, M. A., & Williams, C. M. (2021). A unifying, eco‐physiological framework for animal dormancy. Functional Ecology, 35 (1), 11-31.
Yates, L. A., Norbury, C. J., & Gilbert, R. J. (2013). The long and short of microRNA. Cell, 153 (3), 516-519.