References

Abe, T. 1987. Evolution of life types in termites. Pp. 125–148in S. Kawano, J. H. Connell, and T. Hidaka, eds. Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
Bagnères, A.-G. and R. Hanus. 2015. Communication and social regulation in termites. Pp. 193-248 in L. Aquiloni, and E. Tricarico, eds. Social Recognition in Invertebrates: The Knowns and the Unknowns. Springer International Publishing, Cham.
Barber, M. C., N. T. Price, and M. T. Travers. 2005. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta 1733:1–28.
Beguerisse-Díaz, M., G. Bosque, D. Oyarzún, J. Picó, and M. Barahona. 2018. Flux-dependent graphs for metabolic networks. npj Systems Biology and Applications 4:32.
Bien, T., J. Gadau, A. Schnapp, J. Y. Yew, C. Sievert, and K. Dreisewerd. 2019. Detection of very long-chain hydrocarbons by laser mass spectrometry reveals novel species-, sex-, and age-dependent differences in the cuticular profiles of three Nasonia species. Anal. Bioanal. Chem. 411:2981-2993.
Blomquist, G. J. and A. G. Bagnères. 2010. Insect hydrocarbons: Biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, UK.
Blomquist, G. J. and M. D. Ginzel. 2021. Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annu. Rev. Entomol. 66:45-60.
Buellesbach, J., J. Gadau, L. W. Beukeboom, F. Echinger, R. Raychoudhury, J. H. Werren, and T. Schmitt. 2013. Cuticular hydrocarbon divergence in the jewel wasp Nasonia : Evolutionary shifts in chemical communication channels? J. Evol. Biol. 26:2467-2478.
Buellesbach, J., S. G. Vetter, and T. Schmitt. 2018. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front. Zool. 15.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.
Chouvenc, T., J. Šobotník, M. S. Engel, and T. Bourguignon. 2021. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci.
Chung, H. and S. B. Carroll. 2015. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. Bioessays 37:822-830.
Chung, H., D. W. Loehlin, H. D. Dufour, K. Vaccarro, J. G. Millar, and S. B. Carroll. 2014. A single gene affects both ecological divergence and mate choice in Drosophila . Science 343:1148-1151.
Coyne, J. A., C. Wicker-Thomas, and J. M. Jallon. 1999. A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster . Genet. Res. 73:189-203.
Dallerac, R., C. Labeur, J. M. Jallon, D. C. Knippie, W. L. Roelofs, and C. Wicker-Thomas. 2000. A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster . Proc. Natl. Acad. Sci. USA 97:9449-9454.
Dray, S. and A. B. Dufour. 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Soft. 22:1-20.
Edwards, J. P. and J. E. Short. 1993. Elimination of a population of the oriental cockroach (Dictyoptera: Blattidae) in a simulated domestic environment with the insect juvenile hormone analogue (S)-hydroprene. J. Econ. Entomol. 86:436-443.
Fan, Y. L., L. Zurek, M. J. Dykstra, and C. Schal. 2003. Hydrocarbon synthesis by enzymatically dissociated oenocytes of the abdominal integument of the german cockroach, Blattella germanica . Sci. Nat. 90:121-126.
Fedina, T. Y., T.-H. Kuo, K. Dreisewerd, H. A. Dierick, J. Y. Yew, and S. D. Pletcher. 2012. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila . PLoS One 7:e49799.
Feyereisen, R. 2020. Origin and evolution of the CYP4G subfamily in insects, cytochrome P450 enzymes involved in cuticular hydrocarbon synthesis. Mol. Phylogen. Evol. 143.
Friedman, D. A., B. R. Johnson, and T. A. Linksvayer. 2020. Distributed physiology and the molecular basis of social life in eusocial insects. Horm. Behav. 122:104757.
Funaro, C. F., K. Böröczky, E. L. Vargo, and C. Schal. 2018. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes . Proceedings of the National Academy of Sciences 115:3888-3893.
Golian, M., T. Bien, S. Schmelzle, M. A. Esparza-Mora, D. P. McMahon, K. Dreisewerd, and J. Buellesbach. 2022. Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects. Insects 13:83.
Goryashko, A., L. Samokhine, and P. Bocharov. 2019. About complexity of complex networks. Applied Network Science 4:87.
Greenfield, M. D. 2002. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication. Oxford University Press, New York, USA.
Gu, X., D. Quilici, P. Juarez, G. J. Blomquist, and C. Schal. 1995. Biosynthesis of hydrocarbons and contact sex-pheromone and their transport by lipophorin in females of the german cockroach (Blattella germanica ). J. Insect Physiol. 41:257-267.
Hamilton, J. A., A. Wada-Katsumata, and C. Schal. 2019. Role of Cuticular Hydrocarbons in German Cockroach (Blattodea: Ectobiidae) Aggregation Behavior. Environ. Entomol. 48:546-553.
Hanus, R., V. Vrkoslav, I. Hrdy, J. Cvacka, and J. Sobotnik. 2010. Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proceedings of the Royal Society B: Biological Sciences 277:995-1002.
He, S., T. Sieksmeyer, Y. Che, M. A. E. Mora, P. Stiblik, R. Banasiak, M. C. Harrison, J. Šobotník, Z. Wang, P. R. Johnston, and D. P. McMahon. 2021. Evidence for reduced immune gene diversity and activity during the evolution of termites. Proceedings of the Royal Society B: Biological Sciences 288:20203168.
Heggeseth, B., D. Sim, L. Partida, and L. S. Maroja. 2020. Influence of female cuticular hydrocarbon (CHC) profile on male courtship behavior in two hybridizing field crickets Gryllus firmus and Gryllus pennsylvanicus . BMC Evol. Biol. 20.
Hoffmann, K., J. Gowin, K. Hartfelder, and J. Korb. 2014. The Scent of Royalty: A P450 Gene Signals Reproductive Status in a Social Insect. Mol. Biol. Evol. 31:2689-2696.
Holland, J. G. and G. Bloch. 2020. The Complexity of Social Complexity: A Quantitative Multidimensional Approach for Studies of Social Organization. Am. Nat. 196:525-540.
Holze, H., L. Schrader, and J. Buellesbach. 2021. Advances in deciphering the genetic basis of insect cuticular hydrocarbon biosynthesis and variation. Heredity 126:219-234.
Inward, D., G. Beccaloni, and P. Eggleton. 2007a. Death of an order: A comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3:331-335.
Inward, D. J., A. P. Vogler, and P. Eggleton. 2007b. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogen. Evol. 44:953-967.
Kather, R. and S. J. Martin. 2015. Evolution of cuticular hydrocarbons in the Hymenoptera: A meta-analysis. J. Chem. Ecol. 41:871-883.
Kim, E.-Y., D. Ashlock, and S. H. Yoon. 2019. Identification of critical connectors in the directed reaction-centric graphs of microbial metabolic networks. BMC Bioinformatics 20:328.
Kim, S. M., M. I. Peña, M. Moll, G. N. Bennett, and L. E. Kavraki. 2017. A review of parameters and heuristics for guiding metabolic pathfinding. Journal of Cheminformatics 9:51.
Korb, J. 2007. Termites. Curr. Biol. 17:R995-R999.
Korb, J. and K. Hartfelder. 2008. Life history and development–a framework for understanding developmental plasticity in lower termites. Biol. Rev. Camb. Philos. Soc. 83:295-313.
Korb, J., M. Poulsen, H. Hu, C. Li, J. J. Boomsma, G. Zhang, and J. Liebig. 2015. A genomic comparison of two termites with different social complexity. Frontiers in Genetics 6.
Korb, J. and B. Thorne. 2017. Sociality in termites. Pp. 124-153in D. R. Rubenstein, and P. Abbot, eds. Comparative social evolution. Cambridge University Press, Cambridge, UK.
Krishna, K., D. Grimaldi, V. Krishna, and M. Engel. 2013. Treatise on the Isoptera of the World. Bulletin of the American Museum of Natural History 377:1-200.
Kronauer, D. J. C. and R. Libbrecht. 2018. Back to the roots: the importance of using simple insect societies to understand the molecular basis of complex social life. Curr. Opin. Insect Sci. 28:33-39.
Legendre, F., M. F. Whiting, C. Bordereau, E. M. Cancello, T. A. Evans, and P. Grandcolas. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol Phylogenet Evol 48:615-627.
Leonhardt, Sara D., F. Menzel, V. Nehring, and T. Schmitt. 2016. Ecology and evolution of communication in social insects. Cell 164:1277-1287.
Liebig, J., D. Eliyahu, and C. S. Brent. 2009. Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav. Ecol. Sociobiol. 63:1799-1807.
Lihoreau, M. and C. Rivault. 2008. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20:46-53.
Linksvayer, T. A. 2015. Chapter Eight - The Molecular and Evolutionary Genetic Implications of Being Truly Social for the Social Insects. Pp. 271-292 in A. Zayed, and C. F. Kent, eds. Adv. Insect Physiol. Academic Press.
Löytynoja, A. 2014. Phylogeny-aware alignment with PRANK. Pp. 155-170in D. J. Russell, ed. Multiple Sequence Alignment Methods. Humana Press, Totowa, NJ.
Mantel, N. 1967. Detection of disease clustering and a generalized regression approach. Cancer Research 27:209-220.
Marten, A., M. Kaib, and R. Brandl. 2009. Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). J. Chem. Ecol. 35:572-579.
Martin, S. J. and F. P. Drijfhout. 2009. How reliable is the analysis of complex cuticular hydrocarbon profiles by multivariate statistical methods? J. Chem. Ecol. 35:375-382.
Menzel, F., S. Morsbach, J. H. Martens, P. Rader, S. Hadjaje, M. Poizat, and B. Abou. 2019. Communication versus waterproofing: the physics of insect cuticular hydrocarbons. J. Exp. Biol. 222.
Missbach, C., H. K. Dweck, H. Vogel, A. Vilcinskas, M. C. Stensmyr, B. S. Hansson, and E. Grosse-Wilde. 2014. Evolution of insect olfactory receptors. eLife 3:e02115.
Noirot, C. 1970. The nests of termites. Biology of Termites. Academic Press, New York.
Noirot, C. 1985a. The Caste System in Higher Termites. Pp. 75-86in J. A. L. Watson, B. M. Okot-Kotber, and C. H. Noirot, eds. Caste Differentiation in Social Insects. Pergamon, Amsterdam.
Noirot, C. 1985b. Pathways of Caste Development in the Lower Termites. Pp. 41-57 in J. A. L. Watson, B. M. Okot-Kotber, and C. H. Noirot, eds. Caste Differentiation in Social Insects. Pergamon, Amsterdam.
Noirot, C. and J. M. Pasteels. 1987. Ontogenetic development and evolution of the worker caste in termites. Experientia 43:851-860.
Noirot, C. and J. M. Pasteels. 1988. The worker caste is polyphyletic in termites. Sociobiology:15-20.
Oksanen, J. 2009. Multivariate analysis of ecological communities in R: vegan tutorial. http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf.
Oksanen, J., R. Kindt, P. Legendre, and R. B. O’Hara. 2008. Vegan: community ecology package.
Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinform. 20:289-290.
Pei, X.-J., Y.-L. Fan, Y. Bai, T.-T. Bai, C. Schal, Z.-F. Zhang, N. Chen, S. Li, and T.-X. Liu. 2021. Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biol. 19.
Pei, X. J., N. Chen, Y. Bai, J. W. Qiao, S. Li, Y. L. Fan, and T. X. Liu. 2019. BgFas1: A fatty acid synthase gene required for both hydrocarbon and cuticular fatty acid biosynthesis in the German cockroach, Blattella germanica (L.). Insect Biochem. Mol. Biol. 112:103203.
Qiu, Y., C. Tittiger, C. Wicker-Thomas, G. Le Goff, S. Young, E. Wajnberg, T. Fricaux, N. Taquet, G. J. Blomquist, and R. Feyereisen. 2012. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc. Natl. Acad. Sci. USA 109:14858-14863.
Rajpurohit, S., R. Hanus, V. Vrkoslav, E. L. Behrman, A. O. Bergland, D. Petrov, J. Cvacka, and P. S. Schmidt. 2017. Adaptive dynamics of cuticular hydrocarbons in Drosophila . J. Evol. Biol. 30:66-80.
Rivault, C., A. Cloarec, and L. Sreng. 1998. Cuticular extracts inducing aggregation in the German cockroach, Blattella germanica (L.). J. Insect Physiol. 44:909-918.
Roisin, Y. and J. Korb. 2010. Social Organisation and the Status of Workers in Termites. Pp. 133-164 in D. Bignell, Y. Roisin, and N. Lo, eds. Biology of Termites: A Modern Synthesis. Springer, Dordrecht.
Schnapp, A., A.-C. Niehoff, A. Koch, and K. Dreisewerd. 2016. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates. Methods 104:194-203.
Shahandeh, M. P., A. Pischedda, and T. L. Turner. 2018. Male mate choice via cuticular hydrocarbon pheromones drives reproductive isolation between Drosophila species. Evolution 72:123-135.
Shellman-Reeve, J. S. 1997. The spectrum of eusociality in termites. Pp. 52-93 in B. J. Crespi, and J. C. Choe, eds. The Evolution of Social Behaviour in Insects and Arachnids. Cambridge University Press, Cambridge.
Simon, J.-C., J. R. Marchesi, C. Mougel, and M.-A. Selosse. 2019. Host-microbiota interactions: From holobiont theory to analysis. Microbiome 7:5.
Smith, A. A., J. G. Millar, and A. V. Suarez. 2016. Comparative analysis of fertility signals and sex-specific cuticular chemical profiles ofOdontomachus trap-jaw ants. J. Exp. Biol. 219:419-430.
Sprenger, P. P., J. Hartke, T. Schmitt, F. Menzel, and B. Feldmeyer. 2021. Candidate genes involved in cuticular hydrocarbon differentiation between cryptic, parabiotic ant species. G3 (Bethesda) 11:jkab078.
Sprenger, P. P. and F. Menzel. 2020. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecol. News 30:1-26.
Steitz, I., K. Brandt, F. Biefel, Ä. Minat, and M. Ayasse. 2019. Queen recognition signals in two primitively eusocial halictid bees: Evolutionary conservation and caste-specific perception. Insects 10:416.
Ströbel, B., S. Schmelzle, N. Blüthgen, and M. Heethoff. 2018. An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. ZooKeys 759.
Teseo, S., J. S. van Zweden, L. Pontieri, P. W. Kooij, S. J. Sørensen, T. Wenseleers, M. Poulsen, J. J. Boomsma, and P. Sapountzis. 2019. The scent of symbiosis: Gut bacteria may affect social interactions in leaf-cutting ants. Anim. Behav. 150:239-254.
Thoms, E. M. and W. H. Robinson. 1986. Distribution, seasonal abundance, and pest status of the oriental cockroach (Orthoptera: Blattidae) and an Evaniid wasp (Hymenoptera: Evaniidae) in urban apartments. J. Econ. Entomol. 79:431-436.
Thoms, E. M. and W. H. Robinson. 1987. Distribution and movement of the oriental cockroach (Orthoptera: Blattidae) around apartment buildings. Environ. Entomol. 16:731-737.
Thorne, B. L. 1997. Evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 28:27-54.
Van der Meer, R., M. Breed, K. Espelie, and M. Winston. 1999. Pheromone Communication in Social Insects. Bioscience 49.
Weil, T., K. Hoffmann, J. Kroiss, E. Strohm, and J. Korb. 2009. Scent of a queen—cuticular hydrocarbons specific for female reproductives in lower termites. Sci. Nat. 96:315-319.
Wheeler, T. J. and S. R. Eddy. 2013. nhmmer: DNA homology search with profile HMMs. Bioinform. 29:2487-2489.
Wicker-Thomas, C., D. Garrido, G. Bontonou, L. Napal, N. Mazuras, B. Denis, T. Rubin, J.-P. Parvy, and J. Montagne. 2015. Flexible origin of hydrocarbon/pheromone precursors in Drosophila melanogaster . J. Lipid Res. 56:2094-2101.
Wicker-Thomas, C., C. Henriet, and R. Dallerac. 1997. Partial characterization of a fatty acid desaturase gene in Drosophila melanogaster . Insect Biochem. Mol. Biol. 27:963-972.