References
Abe, T. 1987. Evolution of life types in termites. Pp. 125–148in S. Kawano, J. H. Connell, and T. Hidaka, eds. Evolution and
coadaptation in biotic communities. University of Tokyo Press, Tokyo.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.
Bagnères, A.-G. and R. Hanus. 2015. Communication and social regulation
in termites. Pp. 193-248 in L. Aquiloni, and E. Tricarico, eds.
Social Recognition in Invertebrates: The Knowns and the Unknowns.
Springer International Publishing, Cham.
Barber, M. C., N. T. Price, and M. T. Travers. 2005. Structure and
regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys.
Acta 1733:1–28.
Beguerisse-Díaz, M., G. Bosque, D. Oyarzún, J. Picó, and M. Barahona.
2018. Flux-dependent graphs for metabolic networks. npj Systems Biology
and Applications 4:32.
Bien, T., J. Gadau, A. Schnapp, J. Y. Yew, C. Sievert, and K.
Dreisewerd. 2019. Detection of very long-chain hydrocarbons by laser
mass spectrometry reveals novel species-, sex-, and age-dependent
differences in the cuticular profiles of three Nasonia species.
Anal. Bioanal. Chem. 411:2981-2993.
Blomquist, G. J. and A. G. Bagnères. 2010. Insect hydrocarbons: Biology,
biochemistry, and chemical ecology. Cambridge University Press,
Cambridge, UK.
Blomquist, G. J. and M. D. Ginzel. 2021. Chemical ecology, biochemistry,
and molecular biology of insect hydrocarbons. Annu. Rev. Entomol.
66:45-60.
Buellesbach, J., J. Gadau, L. W. Beukeboom, F. Echinger, R.
Raychoudhury, J. H. Werren, and T. Schmitt. 2013. Cuticular hydrocarbon
divergence in the jewel wasp Nasonia : Evolutionary shifts in
chemical communication channels? J. Evol. Biol. 26:2467-2478.
Buellesbach, J., S. G. Vetter, and T. Schmitt. 2018. Differences in the
reliance on cuticular hydrocarbons as sexual signaling and species
discrimination cues in parasitoid wasps. Front. Zool. 15.
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K.
Bealer, and T. L. Madden. 2009. BLAST+: architecture and applications.
BMC Bioinformatics 10:421.
Chouvenc, T., J. Šobotník, M. S. Engel, and T. Bourguignon. 2021.
Termite evolution: mutualistic associations, key innovations, and the
rise of Termitidae. Cell. Mol. Life Sci.
Chung, H. and S. B. Carroll. 2015. Wax, sex and the origin of species:
Dual roles of insect cuticular hydrocarbons in adaptation and mating.
Bioessays 37:822-830.
Chung, H., D. W. Loehlin, H. D. Dufour, K. Vaccarro, J. G. Millar, and
S. B. Carroll. 2014. A single gene affects both ecological divergence
and mate choice in Drosophila . Science 343:1148-1151.
Coyne, J. A., C. Wicker-Thomas, and J. M. Jallon. 1999. A gene
responsible for a cuticular hydrocarbon polymorphism in Drosophila
melanogaster . Genet. Res. 73:189-203.
Dallerac, R., C. Labeur, J. M. Jallon, D. C. Knippie, W. L. Roelofs, and
C. Wicker-Thomas. 2000. A Δ9 desaturase gene with a different substrate
specificity is responsible for the cuticular diene hydrocarbon
polymorphism in Drosophila melanogaster . Proc. Natl. Acad. Sci.
USA 97:9449-9454.
Dray, S. and A. B. Dufour. 2007. The ade4 package: implementing the
duality diagram for ecologists. J. Stat. Soft. 22:1-20.
Edwards, J. P. and J. E. Short. 1993. Elimination of a population of the
oriental cockroach (Dictyoptera: Blattidae) in a simulated domestic
environment with the insect juvenile hormone analogue (S)-hydroprene. J.
Econ. Entomol. 86:436-443.
Fan, Y. L., L. Zurek, M. J. Dykstra, and C. Schal. 2003. Hydrocarbon
synthesis by enzymatically dissociated oenocytes of the abdominal
integument of the german cockroach, Blattella germanica . Sci.
Nat. 90:121-126.
Fedina, T. Y., T.-H. Kuo, K. Dreisewerd, H. A. Dierick, J. Y. Yew, and
S. D. Pletcher. 2012. Dietary effects on cuticular hydrocarbons and
sexual attractiveness in Drosophila . PLoS One 7:e49799.
Feyereisen, R. 2020. Origin and evolution of the CYP4G subfamily in
insects, cytochrome P450 enzymes involved in cuticular hydrocarbon
synthesis. Mol. Phylogen. Evol. 143.
Friedman, D. A., B. R. Johnson, and T. A. Linksvayer. 2020. Distributed
physiology and the molecular basis of social life in eusocial insects.
Horm. Behav. 122:104757.
Funaro, C. F., K. Böröczky, E. L. Vargo, and C. Schal. 2018.
Identification of a queen and king recognition pheromone in the
subterranean termite Reticulitermes flavipes . Proceedings of the
National Academy of Sciences 115:3888-3893.
Golian, M., T. Bien, S. Schmelzle, M. A. Esparza-Mora, D. P. McMahon, K.
Dreisewerd, and J. Buellesbach. 2022. Neglected Very Long-Chain
Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal
Novel Perspectives for Cuticular Profile Analysis in Insects. Insects
13:83.
Goryashko, A., L. Samokhine, and P. Bocharov. 2019. About complexity of
complex networks. Applied Network Science 4:87.
Greenfield, M. D. 2002. Signalers and Receivers: Mechanisms and
Evolution of Arthropod Communication. Oxford University Press, New York,
USA.
Gu, X., D. Quilici, P. Juarez, G. J. Blomquist, and C. Schal. 1995.
Biosynthesis of hydrocarbons and contact sex-pheromone and their
transport by lipophorin in females of the german cockroach
(Blattella germanica ). J. Insect Physiol. 41:257-267.
Hamilton, J. A., A. Wada-Katsumata, and C. Schal. 2019. Role of
Cuticular Hydrocarbons in German Cockroach (Blattodea: Ectobiidae)
Aggregation Behavior. Environ. Entomol. 48:546-553.
Hanus, R., V. Vrkoslav, I. Hrdy, J. Cvacka, and J. Sobotnik. 2010.
Beyond cuticular hydrocarbons: evidence of proteinaceous secretion
specific to termite kings and queens. Proceedings of the Royal Society
B: Biological Sciences 277:995-1002.
He, S., T. Sieksmeyer, Y. Che, M. A. E. Mora, P. Stiblik, R. Banasiak,
M. C. Harrison, J. Šobotník, Z. Wang, P. R. Johnston, and D. P. McMahon.
2021. Evidence for reduced immune gene diversity and activity during the
evolution of termites. Proceedings of the Royal Society B: Biological
Sciences 288:20203168.
Heggeseth, B., D. Sim, L. Partida, and L. S. Maroja. 2020. Influence of
female cuticular hydrocarbon (CHC) profile on male courtship behavior in
two hybridizing field crickets Gryllus firmus and Gryllus
pennsylvanicus . BMC Evol. Biol. 20.
Hoffmann, K., J. Gowin, K. Hartfelder, and J. Korb. 2014. The Scent of
Royalty: A P450 Gene Signals Reproductive Status in a Social Insect.
Mol. Biol. Evol. 31:2689-2696.
Holland, J. G. and G. Bloch. 2020. The Complexity of Social Complexity:
A Quantitative Multidimensional Approach for Studies of Social
Organization. Am. Nat. 196:525-540.
Holze, H., L. Schrader, and J. Buellesbach. 2021. Advances in
deciphering the genetic basis of insect cuticular hydrocarbon
biosynthesis and variation. Heredity 126:219-234.
Inward, D., G. Beccaloni, and P. Eggleton. 2007a. Death of an order: A
comprehensive molecular phylogenetic study confirms that termites are
eusocial cockroaches. Biol. Lett. 3:331-335.
Inward, D. J., A. P. Vogler, and P. Eggleton. 2007b. A comprehensive
phylogenetic analysis of termites (Isoptera) illuminates key aspects of
their evolutionary biology. Mol. Phylogen. Evol. 44:953-967.
Kather, R. and S. J. Martin. 2015. Evolution of cuticular hydrocarbons
in the Hymenoptera: A meta-analysis. J. Chem. Ecol. 41:871-883.
Kim, E.-Y., D. Ashlock, and S. H. Yoon. 2019. Identification of critical
connectors in the directed reaction-centric graphs of microbial
metabolic networks. BMC Bioinformatics 20:328.
Kim, S. M., M. I. Peña, M. Moll, G. N. Bennett, and L. E. Kavraki. 2017.
A review of parameters and heuristics for guiding metabolic pathfinding.
Journal of Cheminformatics 9:51.
Korb, J. 2007. Termites. Curr. Biol. 17:R995-R999.
Korb, J. and K. Hartfelder. 2008. Life history and development–a
framework for understanding developmental plasticity in lower termites.
Biol. Rev. Camb. Philos. Soc. 83:295-313.
Korb, J., M. Poulsen, H. Hu, C. Li, J. J. Boomsma, G. Zhang, and J.
Liebig. 2015. A genomic comparison of two termites with different social
complexity. Frontiers in Genetics 6.
Korb, J. and B. Thorne. 2017. Sociality in termites. Pp. 124-153in D. R. Rubenstein, and P. Abbot, eds. Comparative social
evolution. Cambridge University Press, Cambridge, UK.
Krishna, K., D. Grimaldi, V. Krishna, and M. Engel. 2013. Treatise on
the Isoptera of the World. Bulletin of the American Museum of Natural
History 377:1-200.
Kronauer, D. J. C. and R. Libbrecht. 2018. Back to the roots: the
importance of using simple insect societies to understand the molecular
basis of complex social life. Curr. Opin. Insect Sci. 28:33-39.
Legendre, F., M. F. Whiting, C. Bordereau, E. M. Cancello, T. A. Evans,
and P. Grandcolas. 2008. The phylogeny of termites (Dictyoptera:
Isoptera) based on mitochondrial and nuclear markers: Implications for
the evolution of the worker and pseudergate castes, and foraging
behaviors. Mol Phylogenet Evol 48:615-627.
Leonhardt, Sara D., F. Menzel, V. Nehring, and T. Schmitt. 2016. Ecology
and evolution of communication in social insects. Cell 164:1277-1287.
Liebig, J., D. Eliyahu, and C. S. Brent. 2009. Cuticular hydrocarbon
profiles indicate reproductive status in the termite Zootermopsis
nevadensis. Behav. Ecol. Sociobiol. 63:1799-1807.
Lihoreau, M. and C. Rivault. 2008. Kin recognition via cuticular
hydrocarbons shapes cockroach social life. Behav. Ecol. 20:46-53.
Linksvayer, T. A. 2015. Chapter Eight - The Molecular and Evolutionary
Genetic Implications of Being Truly Social for the Social Insects. Pp.
271-292 in A. Zayed, and C. F. Kent, eds. Adv. Insect Physiol.
Academic Press.
Löytynoja, A. 2014. Phylogeny-aware alignment with PRANK. Pp. 155-170in D. J. Russell, ed. Multiple Sequence Alignment Methods. Humana
Press, Totowa, NJ.
Mantel, N. 1967. Detection of disease clustering and a generalized
regression approach. Cancer Research 27:209-220.
Marten, A., M. Kaib, and R. Brandl. 2009. Cuticular hydrocarbon
phenotypes do not indicate cryptic species in fungus-growing termites
(Isoptera: Macrotermitinae). J. Chem. Ecol. 35:572-579.
Martin, S. J. and F. P. Drijfhout. 2009. How reliable is the analysis of
complex cuticular hydrocarbon profiles by multivariate statistical
methods? J. Chem. Ecol. 35:375-382.
Menzel, F., S. Morsbach, J. H. Martens, P. Rader, S. Hadjaje, M. Poizat,
and B. Abou. 2019. Communication versus waterproofing: the physics of
insect cuticular hydrocarbons. J. Exp. Biol. 222.
Missbach, C., H. K. Dweck, H. Vogel, A. Vilcinskas, M. C. Stensmyr, B.
S. Hansson, and E. Grosse-Wilde. 2014. Evolution of insect olfactory
receptors. eLife 3:e02115.
Noirot, C. 1970. The nests of termites. Biology of Termites. Academic
Press, New York.
Noirot, C. 1985a. The Caste System in Higher Termites. Pp. 75-86in J. A. L. Watson, B. M. Okot-Kotber, and C. H. Noirot, eds.
Caste Differentiation in Social Insects. Pergamon, Amsterdam.
Noirot, C. 1985b. Pathways of Caste Development in the Lower Termites.
Pp. 41-57 in J. A. L. Watson, B. M. Okot-Kotber, and C. H.
Noirot, eds. Caste Differentiation in Social Insects. Pergamon,
Amsterdam.
Noirot, C. and J. M. Pasteels. 1987. Ontogenetic development and
evolution of the worker caste in termites. Experientia 43:851-860.
Noirot, C. and J. M. Pasteels. 1988. The worker caste is polyphyletic in
termites. Sociobiology:15-20.
Oksanen, J. 2009. Multivariate analysis of ecological communities in R:
vegan tutorial.
http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf.
Oksanen, J., R. Kindt, P. Legendre, and R. B. O’Hara. 2008. Vegan:
community ecology package.
Paradis, E., J. Claude, and K. Strimmer. 2004. APE: Analyses of
phylogenetics and evolution in R language. Bioinform. 20:289-290.
Pei, X.-J., Y.-L. Fan, Y. Bai, T.-T. Bai, C. Schal, Z.-F. Zhang, N.
Chen, S. Li, and T.-X. Liu. 2021. Modulation of fatty acid elongation in
cockroaches sustains sexually dimorphic hydrocarbons and female
attractiveness. PLoS Biol. 19.
Pei, X. J., N. Chen, Y. Bai, J. W. Qiao, S. Li, Y. L. Fan, and T. X.
Liu. 2019. BgFas1: A fatty acid synthase gene required for both
hydrocarbon and cuticular fatty acid biosynthesis in the German
cockroach, Blattella germanica (L.). Insect Biochem. Mol. Biol.
112:103203.
Qiu, Y., C. Tittiger, C. Wicker-Thomas, G. Le Goff, S. Young, E.
Wajnberg, T. Fricaux, N. Taquet, G. J. Blomquist, and R. Feyereisen.
2012. An insect-specific P450 oxidative decarbonylase for cuticular
hydrocarbon biosynthesis. Proc. Natl. Acad. Sci. USA 109:14858-14863.
Rajpurohit, S., R. Hanus, V. Vrkoslav, E. L. Behrman, A. O. Bergland, D.
Petrov, J. Cvacka, and P. S. Schmidt. 2017. Adaptive dynamics of
cuticular hydrocarbons in Drosophila . J. Evol. Biol. 30:66-80.
Rivault, C., A. Cloarec, and L. Sreng. 1998. Cuticular extracts inducing
aggregation in the German cockroach, Blattella germanica (L.). J.
Insect Physiol. 44:909-918.
Roisin, Y. and J. Korb. 2010. Social Organisation and the Status of
Workers in Termites. Pp. 133-164 in D. Bignell, Y. Roisin, and N.
Lo, eds. Biology of Termites: A Modern Synthesis. Springer, Dordrecht.
Schnapp, A., A.-C. Niehoff, A. Koch, and K. Dreisewerd. 2016. Laser
desorption/ionization mass spectrometry of lipids using etched silver
substrates. Methods 104:194-203.
Shahandeh, M. P., A. Pischedda, and T. L. Turner. 2018. Male mate choice
via cuticular hydrocarbon pheromones drives reproductive isolation
between Drosophila species. Evolution 72:123-135.
Shellman-Reeve, J. S. 1997. The spectrum of eusociality in termites. Pp.
52-93 in B. J. Crespi, and J. C. Choe, eds. The Evolution of
Social Behaviour in Insects and Arachnids. Cambridge University Press,
Cambridge.
Simon, J.-C., J. R. Marchesi, C. Mougel, and M.-A. Selosse. 2019.
Host-microbiota interactions: From holobiont theory to analysis.
Microbiome 7:5.
Smith, A. A., J. G. Millar, and A. V. Suarez. 2016. Comparative analysis
of fertility signals and sex-specific cuticular chemical profiles ofOdontomachus trap-jaw ants. J. Exp. Biol. 219:419-430.
Sprenger, P. P., J. Hartke, T. Schmitt, F. Menzel, and B. Feldmeyer.
2021. Candidate genes involved in cuticular hydrocarbon differentiation
between cryptic, parabiotic ant species. G3 (Bethesda) 11:jkab078.
Sprenger, P. P. and F. Menzel. 2020. Cuticular hydrocarbons in ants
(Hymenoptera: Formicidae) and other insects: How and why they differ
among individuals, colonies, and species. Myrmecol. News 30:1-26.
Steitz, I., K. Brandt, F. Biefel, Ä. Minat, and M. Ayasse. 2019. Queen
recognition signals in two primitively eusocial halictid bees:
Evolutionary conservation and caste-specific perception. Insects 10:416.
Ströbel, B., S. Schmelzle, N. Blüthgen, and M. Heethoff. 2018. An
automated device for the digitization and 3D modelling of insects,
combining extended-depth-of-field and all-side multi-view imaging.
ZooKeys 759.
Teseo, S., J. S. van Zweden, L. Pontieri, P. W. Kooij, S. J. Sørensen,
T. Wenseleers, M. Poulsen, J. J. Boomsma, and P. Sapountzis. 2019. The
scent of symbiosis: Gut bacteria may affect social interactions in
leaf-cutting ants. Anim. Behav. 150:239-254.
Thoms, E. M. and W. H. Robinson. 1986. Distribution, seasonal abundance,
and pest status of the oriental cockroach (Orthoptera: Blattidae) and an
Evaniid wasp (Hymenoptera: Evaniidae) in urban apartments. J. Econ.
Entomol. 79:431-436.
Thoms, E. M. and W. H. Robinson. 1987. Distribution and movement of the
oriental cockroach (Orthoptera: Blattidae) around apartment buildings.
Environ. Entomol. 16:731-737.
Thorne, B. L. 1997. Evolution of eusociality in termites. Annu. Rev.
Ecol. Syst. 28:27-54.
Van der Meer, R., M. Breed, K. Espelie, and M. Winston. 1999. Pheromone
Communication in Social Insects. Bioscience 49.
Weil, T., K. Hoffmann, J. Kroiss, E. Strohm, and J. Korb. 2009. Scent of
a queen—cuticular hydrocarbons specific for female reproductives in
lower termites. Sci. Nat. 96:315-319.
Wheeler, T. J. and S. R. Eddy. 2013. nhmmer: DNA homology search with
profile HMMs. Bioinform. 29:2487-2489.
Wicker-Thomas, C., D. Garrido, G. Bontonou, L. Napal, N. Mazuras, B.
Denis, T. Rubin, J.-P. Parvy, and J. Montagne. 2015. Flexible origin of
hydrocarbon/pheromone precursors in Drosophila melanogaster . J.
Lipid Res. 56:2094-2101.
Wicker-Thomas, C., C. Henriet, and R. Dallerac. 1997. Partial
characterization of a fatty acid desaturase gene in Drosophila
melanogaster . Insect Biochem. Mol. Biol. 27:963-972.