Reference
Aguirre‐Gutiérrez, J., Serna‐Chavez, H.M., Villalobos‐Arambula, A.R.,
Pérez de la Rosa, J.A., Raes, N., 2015. Similar but not equivalent:
ecological niche comparison across closely–related
<scp>M</scp> exican white
pines. Divers. Distrib. 21, 245–257. https://doi.org/10.1111/ddi.12268
Ahmad, R., Khuroo, A.A., Charles, B., Hamid, M., Rashid, I., Aravind,
N.A., 2019. Global distribution modelling, invasion risk assessment and
niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate
change. Sci. Rep. 9, 11395. https://doi.org/10.1038/s41598-019-47859-1
Ahmadi, M., Hemami, M.-R., Kaboli, M., Shabani, F., 2023.
<scp>MaxEnt</scp> brings
comparable results when the input data are being completed; Model
parameterization of four species distribution models. Ecol. Evol. 13,
e9827. https://doi.org/10.1002/ece3.9827
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of
species distribution models: prevalence, kappa and the true skill
statistic (TSS). J. Appl. Ecol. 43, 1223–1232.
https://doi.org/10.1111/j.1365-2664.2006.01214.x
Almeida, A.M., Ribeiro, M.M., Ferreira, M.R., Roque, N.,
Quintela-Sabarís, C., Fernandez, P., 2023. Big data help to define
climate change challenges for the typical Mediterranean species Cistus
ladanifer L. Front. Ecol. Evol. 11, 1136224.
https://doi.org/10.3389/fevo.2023.1136224
Ar, S., Anderson, R., Schapire, R., 2006. Maximum entropy modeling of
species geographic distributions. Ecol. Modell. 190, 231–259.
https://doi.org/doi: 10.1016/j.ecolmodel.2005.03.026
Araujo, M., New, M., 2007. Ensemble forecasting of species
distributions. Trends Ecol. Evol. 22, 42–47.
https://doi.org/10.1016/j.tree.2006.09.010
Baghazadeh-Daryaii, L., Sharifi-Sirchi, G.-R., Samsampoor, D., 2017.
Morphological, phytochemical and genetic diversity of Ziziphus spina –
Christi (L) Des. in South and Southeastern of Iran. J. Appl. Res. Med.
Aromat. Plants 7, 99–107. https://doi.org/10.1016/j.jarmap.2017.06.006
Bates, O.K., Bertelsmeier, C., 2021. Climatic niche shifts in introduced
species. Curr. Biol. 31, R1252–R1266.
https://doi.org/10.1016/j.cub.2021.08.035
Baumbach, L., Warren, D.L., Yousefpour, R., Hanewinkel, M., 2021.
Climate change may induce connectivity loss and mountaintop extinction
in Central American forests. Commun. Biol. 4, 869.
https://doi.org/10.1038/s42003-021-02359-9
Behroozian, M., Ejtehadi, H., Peterson, A.T., Memariani, F., Mesdaghi,
M., 2020. Climate change influences on the potential distribution of
Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species
in the Irano-Turanian region. PLoS One 15, e0237527.
https://doi.org/10.1371/journal.pone.0237527
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F.,
2012. Impacts of climate change on the future of biodiversity. Ecol.
Lett. 15, 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Breiner, F.T., Guisan, A., Bergamini, A., Nobis, M.P., 2015. Overcoming
limitations of modelling rare species by using ensembles of small
models. Methods Ecol. Evol. 6, 1210–1218.
https://doi.org/10.1111/2041-210X.12403
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B.,
Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C.,
Zimmermann, N.E., Graham, C.H., Guisan, A., 2012. Measuring ecological
niche overlap from occurrence and spatial environmental data. Glob.
Ecol. Biogeogr. 21, 481–497.
https://doi.org/10.1111/j.1466-8238.2011.00698.x
Chowdhury, S., 2023. Threatened species could be more vulnerable to
climate change in tropical countries. Sci. Total Environ. 858, 159989.
https://doi.org/10.1016/j.scitotenv.2022.159989
Collart, F., Broennimann, O., Guisan, A., Vanderpoorten, A., 2023.
Ecological and biological indicators of the accuracy of species
distribution models: lessons from European bryophytes. Ecography (Cop.).
2023, e06721. https://doi.org/10.1111/ecog.06721
Couet, J., Marjakangas, E.-L., Santangeli, A., Kålås, J.A., Lindström,
Å., Lehikoinen, A., 2022. Short-lived species move uphill faster under
climate change. Oecologia 198, 877–888.
https://doi.org/10.1007/s00442-021-05094-4
Datta, A., Schweiger, O., Kühn, I., 2019. Niche expansion of the
invasive plant species Ageratina adenophora despite evolutionary
constraints. J. Biogeogr. 46, 1306–1315.
https://doi.org/10.1111/jbi.13579
DeChaine, E.G., Wendling, B.M., Forester, B.R., 2014. Integrating
environmental, molecular, and morphological data to unravel an ice‐age
radiation of arctic‐alpine Campanula in western N orth A merica. Ecol.
Evol. 4, 3940–3959. https://doi.org/10.1002/ece3.1168
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen,
M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A.,
Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A., 2017.
ecospat: an R package to support spatial analyses and modeling of
species niches and distributions. Ecography (Cop.). 40, 774–787.
https://doi.org/10.1111/ecog.02671
Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J.,
Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W.,
Kühn, I., Ohlemüller, R., R. Peres‐Neto, P., Reineking, B., Schröder,
B., M. Schurr, F., Wilson, R., 2007. Methods to account for spatial
autocorrelation in the analysis of species distributional data: a
review. Ecography (Cop.). 30, 609–628.
https://doi.org/10.1111/j.2007.0906-7590.05171.x
Du, Y.-Q., Jueterbock, A., Firdaus, M., Hurtado, A.Q., Duan, D., 2023.
Niche comparison and range shifts for two Kappaphycus species in the
Indo-Pacific Ocean under climate change. Ecol. Indic. 154, 110900.
https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110900
Farashi, A., Karimian, Z., 2021. Assessing climate change risks to the
geographical distribution of grass species. Plant Signal. Behav. 16.
https://doi.org/10.1080/15592324.2021.1913311
Franklin, J., 2010. Mapping species distributions: spatial inference and
prediction. Cambridge University Press.
https://doi.org/10.1017/CBO9780511810602
Friedman, J.H., 2001. Greedy function approximation: A gradient boosting
machine. Ann. Stat. 29, 1189–1232.
https://doi.org/10.1214/aos/1013203451
Gallego‐Narbón, A., Alonso, A., Valcárcel, V., Fernández‐Mazuecos, M.,
2023. Repeated asynchronous evolution of single‐species endemics of
ivies ( Hedera L.) in Macaronesian archipelagos. J. Biogeogr. 50,
1763–1777. https://doi.org/10.1111/jbi.14690
Ghehsareh Ardestani, E., Rigi, H., Honarbakhsh, A., 2021. Predicting
optimal habitats of <scp> Haloxylon
persicum </scp> for ecosystem restoration using
ensemble ecological niche modeling under climate change in southeast
Iran. Restor. Ecol. 29, e13492. https://doi.org/10.1111/rec.13492
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C.,
2014. Unifying niche shift studies: insights from biological invasions.
Trends Ecol. Evol. 29, 260–269.
https://doi.org/10.1016/j.tree.2014.02.009
Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability
and Distribution Models. https://doi.org/10.1017/9781139028271
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution
models in ecology. Ecol. Modell. 135, 147–186.
https://doi.org/10.1016/S0304-3800(00)00354-9
Han, L., Zhang, Z., Tu, W., Zhang, Q., Hong, Y., Chen, S., Lin, Z., Gu,
S., Du, Y., Wu, Z., Liu, X., 2023. Preferred prey reduce species
realized niche shift and improve range expansion prediction. Sci. Total
Environ. 859, 160370. https://doi.org/10.1016/j.scitotenv.2022.160370
Harris, J.A., Hobbs, R.J., Higgs, E., Aronson, J., 2006. Ecological
Restoration and Global Climate Change. Restor. Ecol. 14, 170–176.
https://doi.org/10.1111/j.1526-100X.2006.00136.x
Hemami, M.-R., Khosravi, R., Groves, C., Ahmadi, M., 2020. Morphological
diversity and ecological niche divergence in goitered and sand gazelles.
Ecol. Evol. 10, 11535–11548. https://doi.org/10.1002/ece3.6789
Huang, Q., Bateman, B.L., Michel, N.L., Pidgeon, A.M., Radeloff, V.C.,
Heglund, P., Allstadt, A.J., Nowakowski, A.J., Wong, J., Sauer, J.R.,
2023. Modeled distribution shifts of North American birds over four
decades based on suitable climate alone do not predict observed shifts.
Sci. Total Environ. 857, 159603.
https://doi.org/10.1016/j.scitotenv.2022.159603
Jiménez‐Valverde, A., 2012. Insights into the area under the receiver
operating characteristic curve (AUC) as a discrimination measure in
species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507.
https://doi.org/10.1111/j.1466-8238.2011.00683.x
Karami, S., Ejtehadi, H., Moazzeni, H., Vaezi, J., Behroozian, M., 2022.
Minimal climate change impacts on the geographic distribution of Nepeta
glomerulosa, medicinal species endemic to southwestern and central Asia.
Sci. Rep. 12, 19893. https://doi.org/10.1038/s41598-022-24524-8
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza,
R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies
at high resolution for the earth’s land surface areas. Sci. Data 4,
170122. https://doi.org/10.1038/sdata.2017.122
Karimi, V., Karami, E., Keshavarz, M., 2018. Climate change and
agriculture: Impacts and adaptive responses in Iran. J. Integr. Agric.
17, 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5
Karl, T.R., Melillo, J.M., Peterson, T.C. (Eds.), 2009. Global Climate
Change Impacts in the United States: a state of knowledge report from
the U.S. Global Change Research Program.
Keppel, G., Van Niel, K.P., Wardell‐Johnson, G.W., Yates, C.J., Byrne,
M., Mucina, L., Schut, A.G.T., Hopper, S.D., Franklin, S.E., 2012.
Refugia: identifying and understanding safe havens for biodiversity
under climate change. Glob. Ecol. Biogeogr. 21, 393–404.
https://doi.org/10.1111/j.1466-8238.2011.00686.x
Khanal, S., Timilsina, R., Behroozian, M., Peterson, A.T., Poudel, M.,
Alwar, M.S.S., Wijewickrama, T., Osorio-Olvera, L., 2022. Potential
impact of climate change on the distribution and conservation status of
Pterocarpus marsupium, a Near Threatened South Asian medicinal tree
species. Ecol. Inform. 70, 101722.
https://doi.org/10.1016/j.ecoinf.2022.101722
Koldasbayeva, D., Tregubova, P., Shadrin, D., Gasanov, M., Pukalchik,
M., 2022. Large-scale forecasting of Heracleum sosnowskyi habitat
suitability under the climate change on publicly available data. Sci.
Rep. 12, 6128. https://doi.org/10.1038/s41598-022-09953-9
Ksiksi, T.S., K., R., Mousa, M.T., Al-Badi, S.K., Al Kaabi, S.K.,
Alameemi, S.M., Fereaa, S.M., Hassan, F.E., 2019. Climate change-induced
species distribution modeling in hyper-arid ecosystems. F1000Research 8,
978. https://doi.org/10.12688/f1000research.19540.1
Leroy, B., Meynard, C.N., Bellard, C., Courchamp, F., 2016.
virtualspecies, an R package to generate virtual species distributions.
Ecography (Cop.). 39, 599–607. https://doi.org/10.1111/ecog.01388
Liu, C., Wolter, C., Courchamp, F., Roura‐Pascual, N., Jeschke, J.M.,
2022. Biological invasions reveal how niche change affects the
transferability of species distribution models. Ecology 103, e3719.
https://doi.org/10.1002/ecy.3719
Liu, L., Guan, L., Zhao, H., Huang, Y., Mou, Q., Liu, K., Chen, T.,
Wang, X., Zhang, Y., Wei, B., Hu, J., 2021. Modeling habitat suitability
of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change
in China. Ecol. Inform. 63, 101324.
https://doi.org/10.1016/j.ecoinf.2021.101324
Louppe, V., Leroy, B., Herrel, A., Veron, G., 2020. The globally
invasive small Indian mongoose Urva auropunctata is likely to spread
with climate change. Sci. Rep. 10, 7461.
https://doi.org/10.1038/s41598-020-64502-6
Lustenhouwer, N., Parker, I.M., 2022. Beyond tracking climate: Niche
shifts during native range expansion and their implications for novel
invasions. J. Biogeogr. 49, 1481–1493.
https://doi.org/10.1111/jbi.14395
Mahmoodi, S., Heydari, M., Ahmadi, K., Khwarahm, N.R., Karami, O.,
Almasieh, K., Naderi, B., Bernard, P., Mosavi, A., 2022. The current and
future potential geographical distribution of Nepeta crispa Willd., an
endemic, rare and threatened aromatic plant of Iran: Implications for
ecological conservation and restoration. Ecol. Indic. 137, 108752.
https://doi.org/10.1016/j.ecolind.2022.108752
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W.,
2009. Evaluation of consensus methods in predictive species distribution
modelling. Divers. Distrib. 15, 59–69.
https://doi.org/10.1111/j.1472-4642.2008.00491.x
Mathias, S., van Galen, L.G., Jarvie, S., Larcombe, M.J., 2023. Range
reshuffling: Climate change, invasive species, and the case of
Nothofagus forests in Aotearoa New Zealand. Divers. Distrib. 29,
1402–1419. https://doi.org/10.1111/ddi.13767
Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A.,
Eveillard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, P., Jabot,
F., Jarne, P., Joly, D., Julliard, R., Kéfi, S., Kergoat, G.J., Lavorel,
S., Le Gall, L., Meslin, L., Morand, S., Morin, X., Morlon, H., Pinay,
G., Pradel, R., Schurr, F.M., Thuiller, W., Loreau, M., 2015. REVIEW:
Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310.
https://doi.org/10.1111/1365-2664.12482
Naderi Beni, A., Marriner, N., Sharifi, A., Azizpour, J., Kabiri, K.,
Djamali, M., Kirman, A., 2021. Climate change: A driver of future
conflicts in the Persian Gulf Region? Heliyon 7, e06288.
https://doi.org/10.1016/j.heliyon.2021.e06288
Naimi, B., Capinha, C., Ribeiro, J., Rahbek, C., Strubbe, D., Reino, L.,
Araújo, M.B., 2022. Potential for invasion of traded birds under climate
and land‐cover change. Glob. Chang. Biol. 28, 5654–5666.
https://doi.org/10.1111/gcb.16310
Naqinezhad, A., De Lombaerde, E., Gholizadeh, H., Wasof, S., Perring,
M.P., Meeussen, C., De Frenne, P., Verheyen, K., 2022. The combined
effects of climate and canopy cover changes on understorey plants of the
Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Chang.
Biol. 28, 1103–1118. https://doi.org/10.1111/gcb.15946
Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized Linear Models. J. R.
Stat. Soc. Ser. A 135, 370. https://doi.org/10.2307/2344614
Ngila, P.M., Chiawo, D.O., Owuor, M.A., Wasonga, V.O., Mugo, J.W., 2023.
Mapping suitable habitats for globally endangered raptors in Kenya:
Integrating climate factors and conservation planning. Ecol. Evol. 13,
e10443. https://doi.org/10.1002/ece3.10443
Noroozi, J., Talebi, A., Doostmohammadi, M., Manafzadeh, S., Asgarpour,
Z., Schneeweiss, G.M., 2019. Endemic diversity and distribution of the
Iranian vascular flora across phytogeographical regions, biodiversity
hotspots and areas of endemism. Sci. Rep. 9, 12991.
https://doi.org/10.1038/s41598-019-49417-1
Oboudi, R., Malekian, M., Khosravi, R., Fadakar, D., Adibi, M.A., 2021.
Genetic structure and ecological niche segregation of Indian gray
mongoose ( Urva edwardsii ) in Iran. Ecol. Evol. 11, 14813–14827.
https://doi.org/10.1002/ece3.8168
Pandey, A., Singh, R., Radhamani, J., Bhandari, D.C., 2010. Exploring
the potential of Ziziphus nummularia (Burm. f.) Wight et Arn. from drier
regions of India. Genet. Resour. Crop Evol. 57, 929–936.
https://doi.org/10.1007/s10722-010-9566-4
Robinet, C., Roques, A., 2010. Direct impacts of recent climate warming
on insect populations. Integr. Zool. 5, 132–142.
https://doi.org/10.1111/j.1749-4877.2010.00196.x
Rojas-Sandoval, J., 2022. Ziziphus spina-christi (Christ’s thorn jujube)
[WWW Document]. CABI Compend.
https://doi.org/https://doi.org/10.1079/cabicompendium.57569
Sagheb Talebi, K., Sajedi, T., Pourhashemi, M., 2014. Forests of Iran. A
treasure from the past, a hope for the future., Plant and Vegetation.
Springer Netherlands, Dordrecht.
https://doi.org/10.1007/978-94-007-7371-4
Saied, A.S., Gebauer, J., Hammer, K., Buerkert, A., 2008. Ziziphus
spina-christi (L.) Willd.: a multipurpose fruit tree. Genet. Resour.
Crop Evol. 55, 929–937. https://doi.org/10.1007/s10722-007-9299-1
Schoener, T.W., 1970. Nonsynchronous Spatial Overlap of Lizards in
Patchy Habitats. Ecology 51, 408–418. https://doi.org/10.2307/1935376
Sequeira, A.M.M., Bouchet, P.J., Yates, K.L., Mengersen, K., Caley,
M.J., 2018. Transferring biodiversity models for conservation:
Opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264.
https://doi.org/10.1111/2041-210X.12998
Shaban, M., Ghehsareh Ardestani, E., Ebrahimi, A., Borhani, M., 2023.
Climate change impacts on optimal habitat of Stachys inflata medicinal
plant in central Iran. Sci. Rep. 13, 6580.
https://doi.org/10.1038/s41598-023-33660-8
Sillero, N., Ribeiro‐Silva, J., Arenas‐Castro, S., 2022. Shifts in
climatic realised niches of Iberian species. Oikos 2022, e08505.
https://doi.org/10.1111/oik.08505
Singh, L., Kanwar, N., Bhatt, I.D., Nandi, S.K., Bisht, A.K., 2022.
Predicting the potential distribution of Dactylorhiza hatagirea (D. Don)
Soo-an important medicinal orchid in the West Himalaya, under multiple
climate change scenarios. PLoS One 17, e0269673.
https://doi.org/10.1371/journal.pone.0269673
Song, H., Zhang, X., Wang, X., Wang, Y., Li, S., Xu, Y., 2023. Not the
expected poleward migration: Impact of climate change scenarios on the
distribution of two endemic evergreen broad-leaved Quercus species in
China. Sci. Total Environ. 889, 164273.
https://doi.org/10.1016/j.scitotenv.2023.164273
Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P., Reşit Akçakaya,
H., 2012. Combining static and dynamic variables in species distribution
models under climate change. Methods Ecol. Evol. 3, 349–357.
https://doi.org/10.1111/j.2041-210X.2011.00157.x
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2014. Climate
Change 2013 – The Physical Science Basis. Cambridge University Press.
https://doi.org/10.1017/CBO9781107415324
Tarnian, F., Kumar, S., Azarnivand, H., Chahouki, M.A.Z., Mossivand,
A.M., 2021. Assessing the effects of climate change on the distribution
of Daphne mucronata in Iran. Environ. Monit. Assess. 193, 562.
https://doi.org/10.1007/s10661-021-09311-8
Thomas, C., Franco, A., HILL, J., 2006. Range retractions and extinction
in the face of climate warming. Trends Ecol. Evol. 21, 415–416.
https://doi.org/10.1016/j.tree.2006.05.012
Thuiller, W., 2007. Climate change and the ecologist. Nature 448,
550–552. https://doi.org/10.1038/448550a
Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan,
A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., Sykes, M.T.,
Zimmermann, N.E., 2008. Predicting global change impacts on plant
species’ distributions: Future challenges. Perspect. Plant Ecol. Evol.
Syst. 9, 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD –
a platform for ensemble forecasting of species distributions. Ecography
(Cop.). 32, 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
Vaissi, S., Rezaei, S., 2022. Niche Divergence at Intraspecific Level in
the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic,
and Environmental Survey. Front. Ecol. Evol. 10, 774481.
https://doi.org/10.3389/fevo.2022.774481
Wang, Y., Pineda-Munoz, S., McGuire, J.L., 2023. Plants maintain climate
fidelity in the face of dynamic climate change. Proc. Natl. Acad. Sci.
120, e2201946119. https://doi.org/10.1073/pnas.2201946119
Wani, I.A., Khan, S., Verma, S., Al-Misned, F.A., Shafik, H.M.,
El-Serehy, H.A., 2022. Predicting habitat suitability and niche dynamics
of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under
projected climate change. Sci. Rep. 12, 13205.
https://doi.org/10.1038/s41598-022-16837-5
Warren, D.L., Glor, R.E., Turelli, M., 2008. ENVIRONMENTAL NICHE
EQUIVALENCY VERSUS CONSERVATISM: QUANTITATIVE APPROACHES TO NICHE
EVOLUTION. Evolution (N. Y). 62, 2868–2883.
https://doi.org/10.1111/j.1558-5646.2008.00482.x
Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis,
R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Muñoz,
R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D.,
Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F., Whyte, K.P.,
2020. Climate change effects on biodiversity, ecosystems, ecosystem
services, and natural resource management in the United States. Sci.
Total Environ. 733, 137782.
https://doi.org/10.1016/j.scitotenv.2020.137782
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B.,
Cornell, H. V, Damschen, E.I., Jonathan Davies, T., Grytnes, J.-A.,
Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M., Stephens, P.R.,
2010. Niche conservatism as an emerging principle in ecology and
conservation biology. Ecol. Lett. 13, 1310–1324.
https://doi.org/10.1111/j.1461-0248.2010.01515.x
Wiens, J.J., Graham, C.H., 2005. Niche Conservatism: Integrating
Evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol.
Syst. 36, 519–539.
https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Xian, X., Zhao, H., Wang, R., Zhang, H., Chen, B., Liu, W., Wan, F.,
2023. Evidence of the niche expansion of crofton weed following invasion
in China. Ecol. Evol. 13, e9708. https://doi.org/10.1002/ece3.9708
Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F.,
Parnell, S., Fielding, A.H., Bamford, A.J., Ban, S., Barbosa, A.M.,
Dormann, C.F., Elith, J., Embling, C.B., Ervin, G.N., Fisher, R., Gould,
S., Graf, R.F., Gregr, E.J., Halpin, P.N., Heikkinen, R.K., Heinänen,
S., Jones, A.R., Krishnakumar, P.K., Lauria, V., Lozano-Montes, H.,
Mannocci, L., Mellin, C., Mesgaran, M.B., Moreno-Amat, E., Mormede, S.,
Novaczek, E., Oppel, S., Ortuño Crespo, G., Peterson, A.T., Rapacciuolo,
G., Roberts, J.J., Ross, R.E., Scales, K.L., Schoeman, D., Snelgrove,
P., Sundblad, G., Thuiller, W., Torres, L.G., Verbruggen, H., Wang, L.,
Wenger, S., Whittingham, M.J., Zharikov, Y., Zurell, D., Sequeira,
A.M.M., 2018. Outstanding Challenges in the Transferability of
Ecological Models. Trends Ecol. Evol. 33, 790–802.
https://doi.org/10.1016/j.tree.2018.08.001
Zachariah Atwater, D., Barney, J.N., 2021. Climatic niche shifts in 815
introduced plant species affect their predicted distributions. Glob.
Ecol. Biogeogr. 30, 1671–1684. https://doi.org/10.1111/geb.13342
Zhu, G.-P., Peterson, A.T., 2017. Do consensus models outperform
individual models? Transferability evaluations of diverse modeling
approaches for an invasive moth. Biol. Invasions 19, 2519–2532.
https://doi.org/10.1007/s10530-017-1460-y
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F.,
Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A.,
Lahoz-Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T.,
Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M.,
Thuiller, W., Yates, K.L., Zimmermann, N.E., Merow, C., 2020. A standard
protocol for reporting species distribution models. Ecography (Cop.).
43. https://doi.org/10.1111/ecog.04960