Reference
Aguirre‐Gutiérrez, J., Serna‐Chavez, H.M., Villalobos‐Arambula, A.R., Pérez de la Rosa, J.A., Raes, N., 2015. Similar but not equivalent: ecological niche comparison across closely–related <scp>M</scp> exican white pines. Divers. Distrib. 21, 245–257. https://doi.org/10.1111/ddi.12268
Ahmad, R., Khuroo, A.A., Charles, B., Hamid, M., Rashid, I., Aravind, N.A., 2019. Global distribution modelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change. Sci. Rep. 9, 11395. https://doi.org/10.1038/s41598-019-47859-1
Ahmadi, M., Hemami, M.-R., Kaboli, M., Shabani, F., 2023. <scp>MaxEnt</scp> brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecol. Evol. 13, e9827. https://doi.org/10.1002/ece3.9827
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Almeida, A.M., Ribeiro, M.M., Ferreira, M.R., Roque, N., Quintela-Sabarís, C., Fernandez, P., 2023. Big data help to define climate change challenges for the typical Mediterranean species Cistus ladanifer L. Front. Ecol. Evol. 11, 1136224. https://doi.org/10.3389/fevo.2023.1136224
Ar, S., Anderson, R., Schapire, R., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/doi: 10.1016/j.ecolmodel.2005.03.026
Araujo, M., New, M., 2007. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47. https://doi.org/10.1016/j.tree.2006.09.010
Baghazadeh-Daryaii, L., Sharifi-Sirchi, G.-R., Samsampoor, D., 2017. Morphological, phytochemical and genetic diversity of Ziziphus spina – Christi (L) Des. in South and Southeastern of Iran. J. Appl. Res. Med. Aromat. Plants 7, 99–107. https://doi.org/10.1016/j.jarmap.2017.06.006
Bates, O.K., Bertelsmeier, C., 2021. Climatic niche shifts in introduced species. Curr. Biol. 31, R1252–R1266. https://doi.org/10.1016/j.cub.2021.08.035
Baumbach, L., Warren, D.L., Yousefpour, R., Hanewinkel, M., 2021. Climate change may induce connectivity loss and mountaintop extinction in Central American forests. Commun. Biol. 4, 869. https://doi.org/10.1038/s42003-021-02359-9
Behroozian, M., Ejtehadi, H., Peterson, A.T., Memariani, F., Mesdaghi, M., 2020. Climate change influences on the potential distribution of Dianthus polylepis Bien. ex Boiss. (Caryophyllaceae), an endemic species in the Irano-Turanian region. PLoS One 15, e0237527. https://doi.org/10.1371/journal.pone.0237527
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
Breiner, F.T., Guisan, A., Bergamini, A., Nobis, M.P., 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218. https://doi.org/10.1111/2041-210X.12403
Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H., Guisan, A., 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Chowdhury, S., 2023. Threatened species could be more vulnerable to climate change in tropical countries. Sci. Total Environ. 858, 159989. https://doi.org/10.1016/j.scitotenv.2022.159989
Collart, F., Broennimann, O., Guisan, A., Vanderpoorten, A., 2023. Ecological and biological indicators of the accuracy of species distribution models: lessons from European bryophytes. Ecography (Cop.). 2023, e06721. https://doi.org/10.1111/ecog.06721
Couet, J., Marjakangas, E.-L., Santangeli, A., Kålås, J.A., Lindström, Å., Lehikoinen, A., 2022. Short-lived species move uphill faster under climate change. Oecologia 198, 877–888. https://doi.org/10.1007/s00442-021-05094-4
Datta, A., Schweiger, O., Kühn, I., 2019. Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. J. Biogeogr. 46, 1306–1315. https://doi.org/10.1111/jbi.13579
DeChaine, E.G., Wendling, B.M., Forester, B.R., 2014. Integrating environmental, molecular, and morphological data to unravel an ice‐age radiation of arctic‐alpine Campanula in western N orth A merica. Ecol. Evol. 4, 3940–3959. https://doi.org/10.1002/ece3.1168
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F.T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., Dubuis, A., Pellissier, L., Mateo, R.G., Hordijk, W., Salamin, N., Guisan, A., 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography (Cop.). 40, 774–787. https://doi.org/10.1111/ecog.02671
Dormann, C., M. McPherson, J., B. Araújo, M., Bivand, R., Bolliger, J., Carl, G., G. Davies, R., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., R. Peres‐Neto, P., Reineking, B., Schröder, B., M. Schurr, F., Wilson, R., 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628. https://doi.org/10.1111/j.2007.0906-7590.05171.x
Du, Y.-Q., Jueterbock, A., Firdaus, M., Hurtado, A.Q., Duan, D., 2023. Niche comparison and range shifts for two Kappaphycus species in the Indo-Pacific Ocean under climate change. Ecol. Indic. 154, 110900. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110900
Farashi, A., Karimian, Z., 2021. Assessing climate change risks to the geographical distribution of grass species. Plant Signal. Behav. 16. https://doi.org/10.1080/15592324.2021.1913311
Franklin, J., 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press. https://doi.org/10.1017/CBO9780511810602
Friedman, J.H., 2001. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232. https://doi.org/10.1214/aos/1013203451
Gallego‐Narbón, A., Alonso, A., Valcárcel, V., Fernández‐Mazuecos, M., 2023. Repeated asynchronous evolution of single‐species endemics of ivies ( Hedera L.) in Macaronesian archipelagos. J. Biogeogr. 50, 1763–1777. https://doi.org/10.1111/jbi.14690
Ghehsareh Ardestani, E., Rigi, H., Honarbakhsh, A., 2021. Predicting optimal habitats of <scp> Haloxylon persicum </scp> for ecosystem restoration using ensemble ecological niche modeling under climate change in southeast Iran. Restor. Ecol. 29, e13492. https://doi.org/10.1111/rec.13492
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., Kueffer, C., 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat Suitability and Distribution Models. https://doi.org/10.1017/9781139028271
Guisan, A., Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Han, L., Zhang, Z., Tu, W., Zhang, Q., Hong, Y., Chen, S., Lin, Z., Gu, S., Du, Y., Wu, Z., Liu, X., 2023. Preferred prey reduce species realized niche shift and improve range expansion prediction. Sci. Total Environ. 859, 160370. https://doi.org/10.1016/j.scitotenv.2022.160370
Harris, J.A., Hobbs, R.J., Higgs, E., Aronson, J., 2006. Ecological Restoration and Global Climate Change. Restor. Ecol. 14, 170–176. https://doi.org/10.1111/j.1526-100X.2006.00136.x
Hemami, M.-R., Khosravi, R., Groves, C., Ahmadi, M., 2020. Morphological diversity and ecological niche divergence in goitered and sand gazelles. Ecol. Evol. 10, 11535–11548. https://doi.org/10.1002/ece3.6789
Huang, Q., Bateman, B.L., Michel, N.L., Pidgeon, A.M., Radeloff, V.C., Heglund, P., Allstadt, A.J., Nowakowski, A.J., Wong, J., Sauer, J.R., 2023. Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Sci. Total Environ. 857, 159603. https://doi.org/10.1016/j.scitotenv.2022.159603
Jiménez‐Valverde, A., 2012. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 21, 498–507. https://doi.org/10.1111/j.1466-8238.2011.00683.x
Karami, S., Ejtehadi, H., Moazzeni, H., Vaezi, J., Behroozian, M., 2022. Minimal climate change impacts on the geographic distribution of Nepeta glomerulosa, medicinal species endemic to southwestern and central Asia. Sci. Rep. 12, 19893. https://doi.org/10.1038/s41598-022-24524-8
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P., Kessler, M., 2017. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122. https://doi.org/10.1038/sdata.2017.122
Karimi, V., Karami, E., Keshavarz, M., 2018. Climate change and agriculture: Impacts and adaptive responses in Iran. J. Integr. Agric. 17, 1–15. https://doi.org/10.1016/S2095-3119(17)61794-5
Karl, T.R., Melillo, J.M., Peterson, T.C. (Eds.), 2009. Global Climate Change Impacts in the United States: a state of knowledge report from the U.S. Global Change Research Program.
Keppel, G., Van Niel, K.P., Wardell‐Johnson, G.W., Yates, C.J., Byrne, M., Mucina, L., Schut, A.G.T., Hopper, S.D., Franklin, S.E., 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404. https://doi.org/10.1111/j.1466-8238.2011.00686.x
Khanal, S., Timilsina, R., Behroozian, M., Peterson, A.T., Poudel, M., Alwar, M.S.S., Wijewickrama, T., Osorio-Olvera, L., 2022. Potential impact of climate change on the distribution and conservation status of Pterocarpus marsupium, a Near Threatened South Asian medicinal tree species. Ecol. Inform. 70, 101722. https://doi.org/10.1016/j.ecoinf.2022.101722
Koldasbayeva, D., Tregubova, P., Shadrin, D., Gasanov, M., Pukalchik, M., 2022. Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data. Sci. Rep. 12, 6128. https://doi.org/10.1038/s41598-022-09953-9
Ksiksi, T.S., K., R., Mousa, M.T., Al-Badi, S.K., Al Kaabi, S.K., Alameemi, S.M., Fereaa, S.M., Hassan, F.E., 2019. Climate change-induced species distribution modeling in hyper-arid ecosystems. F1000Research 8, 978. https://doi.org/10.12688/f1000research.19540.1
Leroy, B., Meynard, C.N., Bellard, C., Courchamp, F., 2016. virtualspecies, an R package to generate virtual species distributions. Ecography (Cop.). 39, 599–607. https://doi.org/10.1111/ecog.01388
Liu, C., Wolter, C., Courchamp, F., Roura‐Pascual, N., Jeschke, J.M., 2022. Biological invasions reveal how niche change affects the transferability of species distribution models. Ecology 103, e3719. https://doi.org/10.1002/ecy.3719
Liu, L., Guan, L., Zhao, H., Huang, Y., Mou, Q., Liu, K., Chen, T., Wang, X., Zhang, Y., Wei, B., Hu, J., 2021. Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecol. Inform. 63, 101324. https://doi.org/10.1016/j.ecoinf.2021.101324
Louppe, V., Leroy, B., Herrel, A., Veron, G., 2020. The globally invasive small Indian mongoose Urva auropunctata is likely to spread with climate change. Sci. Rep. 10, 7461. https://doi.org/10.1038/s41598-020-64502-6
Lustenhouwer, N., Parker, I.M., 2022. Beyond tracking climate: Niche shifts during native range expansion and their implications for novel invasions. J. Biogeogr. 49, 1481–1493. https://doi.org/10.1111/jbi.14395
Mahmoodi, S., Heydari, M., Ahmadi, K., Khwarahm, N.R., Karami, O., Almasieh, K., Naderi, B., Bernard, P., Mosavi, A., 2022. The current and future potential geographical distribution of Nepeta crispa Willd., an endemic, rare and threatened aromatic plant of Iran: Implications for ecological conservation and restoration. Ecol. Indic. 137, 108752. https://doi.org/10.1016/j.ecolind.2022.108752
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus methods in predictive species distribution modelling. Divers. Distrib. 15, 59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x
Mathias, S., van Galen, L.G., Jarvie, S., Larcombe, M.J., 2023. Range reshuffling: Climate change, invasive species, and the case of Nothofagus forests in Aotearoa New Zealand. Divers. Distrib. 29, 1402–1419. https://doi.org/10.1111/ddi.13767
Mouquet, N., Lagadeuc, Y., Devictor, V., Doyen, L., Duputié, A., Eveillard, D., Faure, D., Garnier, E., Gimenez, O., Huneman, P., Jabot, F., Jarne, P., Joly, D., Julliard, R., Kéfi, S., Kergoat, G.J., Lavorel, S., Le Gall, L., Meslin, L., Morand, S., Morin, X., Morlon, H., Pinay, G., Pradel, R., Schurr, F.M., Thuiller, W., Loreau, M., 2015. REVIEW: Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310. https://doi.org/10.1111/1365-2664.12482
Naderi Beni, A., Marriner, N., Sharifi, A., Azizpour, J., Kabiri, K., Djamali, M., Kirman, A., 2021. Climate change: A driver of future conflicts in the Persian Gulf Region? Heliyon 7, e06288. https://doi.org/10.1016/j.heliyon.2021.e06288
Naimi, B., Capinha, C., Ribeiro, J., Rahbek, C., Strubbe, D., Reino, L., Araújo, M.B., 2022. Potential for invasion of traded birds under climate and land‐cover change. Glob. Chang. Biol. 28, 5654–5666. https://doi.org/10.1111/gcb.16310
Naqinezhad, A., De Lombaerde, E., Gholizadeh, H., Wasof, S., Perring, M.P., Meeussen, C., De Frenne, P., Verheyen, K., 2022. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Chang. Biol. 28, 1103–1118. https://doi.org/10.1111/gcb.15946
Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized Linear Models. J. R. Stat. Soc. Ser. A 135, 370. https://doi.org/10.2307/2344614
Ngila, P.M., Chiawo, D.O., Owuor, M.A., Wasonga, V.O., Mugo, J.W., 2023. Mapping suitable habitats for globally endangered raptors in Kenya: Integrating climate factors and conservation planning. Ecol. Evol. 13, e10443. https://doi.org/10.1002/ece3.10443
Noroozi, J., Talebi, A., Doostmohammadi, M., Manafzadeh, S., Asgarpour, Z., Schneeweiss, G.M., 2019. Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Sci. Rep. 9, 12991. https://doi.org/10.1038/s41598-019-49417-1
Oboudi, R., Malekian, M., Khosravi, R., Fadakar, D., Adibi, M.A., 2021. Genetic structure and ecological niche segregation of Indian gray mongoose ( Urva edwardsii ) in Iran. Ecol. Evol. 11, 14813–14827. https://doi.org/10.1002/ece3.8168
Pandey, A., Singh, R., Radhamani, J., Bhandari, D.C., 2010. Exploring the potential of Ziziphus nummularia (Burm. f.) Wight et Arn. from drier regions of India. Genet. Resour. Crop Evol. 57, 929–936. https://doi.org/10.1007/s10722-010-9566-4
Robinet, C., Roques, A., 2010. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142. https://doi.org/10.1111/j.1749-4877.2010.00196.x
Rojas-Sandoval, J., 2022. Ziziphus spina-christi (Christ’s thorn jujube) [WWW Document]. CABI Compend. https://doi.org/https://doi.org/10.1079/cabicompendium.57569
Sagheb Talebi, K., Sajedi, T., Pourhashemi, M., 2014. Forests of Iran. A treasure from the past, a hope for the future., Plant and Vegetation. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-7371-4
Saied, A.S., Gebauer, J., Hammer, K., Buerkert, A., 2008. Ziziphus spina-christi (L.) Willd.: a multipurpose fruit tree. Genet. Resour. Crop Evol. 55, 929–937. https://doi.org/10.1007/s10722-007-9299-1
Schoener, T.W., 1970. Nonsynchronous Spatial Overlap of Lizards in Patchy Habitats. Ecology 51, 408–418. https://doi.org/10.2307/1935376
Sequeira, A.M.M., Bouchet, P.J., Yates, K.L., Mengersen, K., Caley, M.J., 2018. Transferring biodiversity models for conservation: Opportunities and challenges. Methods Ecol. Evol. 9, 1250–1264. https://doi.org/10.1111/2041-210X.12998
Shaban, M., Ghehsareh Ardestani, E., Ebrahimi, A., Borhani, M., 2023. Climate change impacts on optimal habitat of Stachys inflata medicinal plant in central Iran. Sci. Rep. 13, 6580. https://doi.org/10.1038/s41598-023-33660-8
Sillero, N., Ribeiro‐Silva, J., Arenas‐Castro, S., 2022. Shifts in climatic realised niches of Iberian species. Oikos 2022, e08505. https://doi.org/10.1111/oik.08505
Singh, L., Kanwar, N., Bhatt, I.D., Nandi, S.K., Bisht, A.K., 2022. Predicting the potential distribution of Dactylorhiza hatagirea (D. Don) Soo-an important medicinal orchid in the West Himalaya, under multiple climate change scenarios. PLoS One 17, e0269673. https://doi.org/10.1371/journal.pone.0269673
Song, H., Zhang, X., Wang, X., Wang, Y., Li, S., Xu, Y., 2023. Not the expected poleward migration: Impact of climate change scenarios on the distribution of two endemic evergreen broad-leaved Quercus species in China. Sci. Total Environ. 889, 164273. https://doi.org/10.1016/j.scitotenv.2023.164273
Stanton, J.C., Pearson, R.G., Horning, N., Ersts, P., Reşit Akçakaya, H., 2012. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol. Evol. 3, 349–357. https://doi.org/10.1111/j.2041-210X.2011.00157.x
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2014. Climate Change 2013 – The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324
Tarnian, F., Kumar, S., Azarnivand, H., Chahouki, M.A.Z., Mossivand, A.M., 2021. Assessing the effects of climate change on the distribution of Daphne mucronata in Iran. Environ. Monit. Assess. 193, 562. https://doi.org/10.1007/s10661-021-09311-8
Thomas, C., Franco, A., HILL, J., 2006. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012
Thuiller, W., 2007. Climate change and the ecologist. Nature 448, 550–552. https://doi.org/10.1038/448550a
Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G.F., Paterson, J., Schurr, F.M., Sykes, M.T., Zimmermann, N.E., 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152. https://doi.org/10.1016/j.ppees.2007.09.004
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M.B., 2009. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography (Cop.). 32, 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
Vaissi, S., Rezaei, S., 2022. Niche Divergence at Intraspecific Level in the Hyrcanian Wood Frog, Rana pseudodalmatina: A Phylogenetic, Climatic, and Environmental Survey. Front. Ecol. Evol. 10, 774481. https://doi.org/10.3389/fevo.2022.774481
Wang, Y., Pineda-Munoz, S., McGuire, J.L., 2023. Plants maintain climate fidelity in the face of dynamic climate change. Proc. Natl. Acad. Sci. 120, e2201946119. https://doi.org/10.1073/pnas.2201946119
Wani, I.A., Khan, S., Verma, S., Al-Misned, F.A., Shafik, H.M., El-Serehy, H.A., 2022. Predicting habitat suitability and niche dynamics of Dactylorhiza hatagirea and Rheum webbianum in the Himalaya under projected climate change. Sci. Rep. 12, 13205. https://doi.org/10.1038/s41598-022-16837-5
Warren, D.L., Glor, R.E., Turelli, M., 2008. ENVIRONMENTAL NICHE EQUIVALENCY VERSUS CONSERVATISM: QUANTITATIVE APPROACHES TO NICHE EVOLUTION. Evolution (N. Y). 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Weiskopf, S.R., Rubenstein, M.A., Crozier, L.G., Gaichas, S., Griffis, R., Halofsky, J.E., Hyde, K.J.W., Morelli, T.L., Morisette, J.T., Muñoz, R.C., Pershing, A.J., Peterson, D.L., Poudel, R., Staudinger, M.D., Sutton-Grier, A.E., Thompson, L., Vose, J., Weltzin, J.F., Whyte, K.P., 2020. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782
Wiens, J.J., Ackerly, D.D., Allen, A.P., Anacker, B.L., Buckley, L.B., Cornell, H. V, Damschen, E.I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S.P., Hawkins, B.A., Holt, R.D., McCain, C.M., Stephens, P.R., 2010. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
Wiens, J.J., Graham, C.H., 2005. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
Xian, X., Zhao, H., Wang, R., Zhang, H., Chen, B., Liu, W., Wan, F., 2023. Evidence of the niche expansion of crofton weed following invasion in China. Ecol. Evol. 13, e9708. https://doi.org/10.1002/ece3.9708
Yates, K.L., Bouchet, P.J., Caley, M.J., Mengersen, K., Randin, C.F., Parnell, S., Fielding, A.H., Bamford, A.J., Ban, S., Barbosa, A.M., Dormann, C.F., Elith, J., Embling, C.B., Ervin, G.N., Fisher, R., Gould, S., Graf, R.F., Gregr, E.J., Halpin, P.N., Heikkinen, R.K., Heinänen, S., Jones, A.R., Krishnakumar, P.K., Lauria, V., Lozano-Montes, H., Mannocci, L., Mellin, C., Mesgaran, M.B., Moreno-Amat, E., Mormede, S., Novaczek, E., Oppel, S., Ortuño Crespo, G., Peterson, A.T., Rapacciuolo, G., Roberts, J.J., Ross, R.E., Scales, K.L., Schoeman, D., Snelgrove, P., Sundblad, G., Thuiller, W., Torres, L.G., Verbruggen, H., Wang, L., Wenger, S., Whittingham, M.J., Zharikov, Y., Zurell, D., Sequeira, A.M.M., 2018. Outstanding Challenges in the Transferability of Ecological Models. Trends Ecol. Evol. 33, 790–802. https://doi.org/10.1016/j.tree.2018.08.001
Zachariah Atwater, D., Barney, J.N., 2021. Climatic niche shifts in 815 introduced plant species affect their predicted distributions. Glob. Ecol. Biogeogr. 30, 1671–1684. https://doi.org/10.1111/geb.13342
Zhu, G.-P., Peterson, A.T., 2017. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biol. Invasions 19, 2519–2532. https://doi.org/10.1007/s10530-017-1460-y
Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., Fandos, G., Feng, X., Guillera-Arroita, G., Guisan, A., Lahoz-Monfort, J.J., Leitão, P.J., Park, D.S., Peterson, A.T., Rapacciuolo, G., Schmatz, D.R., Schröder, B., Serra-Diaz, J.M., Thuiller, W., Yates, K.L., Zimmermann, N.E., Merow, C., 2020. A standard protocol for reporting species distribution models. Ecography (Cop.). 43. https://doi.org/10.1111/ecog.04960