Land degradation due to soil erosion presents a challenge for sustainable development. We investigated the impact of land use type and land management practices on runoff and sediment yield dynamics in the northwestern highlands of Ethiopia. The study area included 14 zero-order catchments with a surface area ranging from 324 m2 to 1715 m2. V-notch weirs produced from plastic jars were introduced as measuring alternatives that met local constraints. Runoff depth at the weir was registered at 5-min intervals during two rainy seasons in 2018 and 2019. Rainfall was measured using tipping-bucket rain gauges. Runoff samples were collected in 1-L bottles and suspended sediment concentration (SSC) was determined. The mean event runoff coefficient ranged from 3% for forests to 56% for badlands. Similarly, the mean annual sediment yield (SY) was lowest for forests (0.8 Mg ha-1 yr-1) and highest for badlands (43.4 Mg ha-1 yr-1), with significant differences among land use types (14.8 Mg ha-1 yr-1 in cropland, 5.7 Mg ha-1 yr-1 in grazing land, and 2.9 Mg ha-1 yr-1 in plantations). Soil organic matter (SOM) reduced runoff and SY, necessitating the consideration of agronomic and land management practices that enhance SOM. Annual SY decreased exponentially with the rock fragment cover (RFC). In fields where RFC was less than 20%, collecting rock fragments for installing stone bunds resulted in a net increase in SY. Rehabilitating badlands and enhancing SOM content in croplands can substantially reduce catchment SY and, hence considerably contribute to the sustainability of this type of environment.

Tesfay Araya

and 7 more

Conservation agriculture (CA) systems represent a set of three soil management principles that include minimal soil disturbance, permanent soil cover and crop rotations whereas the CA-based systems in this study add the bed and furrow tillage structures as integral elements of CA. This study aimed at investigating the long-term (2005-2013) influence of CA-based systems on soil health and crop productivity in northern Ethiopia. The treatments include two types of CA-based systems (permanent raised bed PRB and contour furrowing CF) and conventional tillage (CT). The experimental layout was arranged in a randomized complete block design. Soil samples were collected at 0-10 cm soil depth to assess soil health. Wheat root samples were used to measure arbuscular mycorrhizal fungi (AMF) colonization percentage using grid line intersect method. Piecewise structural equation modeling (PSEM) was used to understand linkages between management practices, soil health and crop productivity. Higher soil microbial biomass carbon (SMBC), AMF spore abundance and root colonization were recorded in PRB followed by CF as compared to CT (P < 0.05). Carbon sequestration rate, nutrient availability, plant available water capacity and air capacity were significantly higher in PRB and CF compared to CT. Outputs of the PSEM highlighted two pathways in which CA-based systems contributed to improved productivity: (1) via higher density of bacteria and improved hydraulic conductivity, and (2) via higher density of fungi and increase soil organic carbon content in the topsoil. The study concludes that CA-based systems have the potential to improve crop productivity through improved soil health.