Giovanni Rossi

and 4 more

Severe RSV infection in infancy is associated with increased risk of recurrent wheezing in childhood. Both acute and long-term alterations in airway functions are thought to be related to inefficient anti-viral immune response. The airway epithelium, the first target of respiratory syncytial virus (RSV), normally acts as an immunological barrier able to elicit an effective immune reaction but may also be programmed to directly promote a Th2 response, independently from Th2 lymphocyte involvement. Recognition of RSV transcripts and viral replication intermediates by bronchial epithelial cells brings about release of TSLP, IL-33, HMGB1 and IL-25, dubbed “alarmins”. These epithelial cell-derived proteins are particularly effective in stimulating innate lymphoid cells 2 (ILC2) to release IL-4, IL-5, and IL-13. ILC2, reflect the innate counterparts of Th2 cells and, when activate, are potent promoters of airway inflammation and hyperresponsiveness in RSV bronchiolitis and childhood wheezing/asthma. Long-term epithelial progenitors or persistent epigenetic modifications of the airway epithelium following RSV infection, may play a pathogenetic role in the short and long-term increased susceptibility to obstructive lung diseases in response to RSV in the young. Additionally, ILC2 function may be further regulated by RSV-induced changes in gut microbiota community composition that can be associated with disease severity in infants. A better understanding of the alarmin-ILC interactions in childhood might provide insights into the mechanisms characterizing these immune-mediated diseases and indicate new targets for prevention and therapeutic interventions.

Giovanni Rossi

and 4 more

The immunopathology of respiratory syncytial virus (RSV) infection, the most common cause of lower respiratory tract infections (LRTI) in the pediatric population, with severe disease being the exception. The variability of the clinical presentation is incompletely explained by host, viral and environmental factors but, in infants and young children, disease severity is certainly linked to the physiological immune immaturity. There is evidence that the maturation of the host immune response is, at least in part, promoted by the composition of the nasopharyngeal microbiome that, modulating excessive inflammation, can counteract the predisposition to develop viral respiratory infections and lower the risk of disease severity. However, interaction between the nasopharyngeal microbiota and respiratory viruses can be bidirectional. Microbial dysbiosis can drive disease pathogenesis but may also represents a reflection of the disease-induced alterations of the local milieu. Moreover, viruses like RSV, can also increase the virulence of potential pathogens in nasopharynx, which is a main reservoir of bacteria, and therefore promote their spread to the lower airways causing superinfection. Negative changes in microbial community composition in early life may constitute a heightened risk towards severe RSV respiratory infection and bacterial superinfection, whilst specific groups of microorganisms can be associated with protection. A better understanding into the potential negative and positive role of the different nasopharyngeal bacterial species in disease prevention as well as into the possible benefits of microbiome therapeutic manipulation, may improve patient outcomes.