Bin Yan

and 5 more

The subfamily Typhlocybinae is a ubiquitous, highly diverse group of mostly tiny, delicate leafhoppers. The tribal classification has long been controversial and phylogenetic methods have only recently begun to test the phylogenetic status and relationships of tribes. To shed light on the evolution of Typhlocybinae, we performed phylogenetic analyses based on 28 newly sequenced and 19 previously sequenced mitochondrial genomes representing all currently recognized tribes. The results support the monophyly of the subfamily and its sister group relationship to Mileewinae. The tribe Zyginellini is polyphyletic with some included genera derived independently within Typhlocybini. Ancestral character state reconstruction suggests that some morphological characters traditionally considered important for diagnosing tribes (presence/absence of ocelli, development of hind wing submarginal vein) are homoplastic. Divergence time estimates indicate that the subfamily arose during the Middle Cretaceous and that the extant tribes arose during the Late Cretaceous. Phylogenetic results support establishment of a new genus, Subtilissimia Yan & Yang gen. nov., with two new species, Subtilissimia fulva Yan & Yang sp. nov. and Subtilissimia pellicula Yan & Yang sp. nov. (Typhlocybinae: Typhlocybini); but indicate that two previously recognized species of Farynala distinguished only by the direction of curvature of the processes of the aedeagus are synonyms, i.e., Farynala dextra Yan & Yang, 2017 equals Farynala sinistra Yan & Yang, 2017 syn. nov. A key to tribes of Typhlocybinae is provided.

Valeria Trivellone

and 3 more

Phytoplasmas (Mollicutes, Acholeplasmataceae), vector-borne obligate bacterial plant-parasites, infect nearly 1,000 plant species and unknown numbers of insects, mainly leafhoppers (Hemiptera, Deltocephalinae), which play a key role in transmission and epidemiology. Although the plant-phytoplasma-insect association has been evolving for >300 million years, nearly all known phytoplasmas have been discovered as a result of the damage inflicted by phytoplasma diseases on crops. Few efforts have been made to study phytoplasmas occurring in non-economically important plants in natural habitats. In this study, a sub-sample of leafhopper specimens preserved in a large museum biorepository was analyzed to unveil potential new associations. PCR screening for phytoplasmas performed on 227 phloem-feeding leafhoppers collected worldwide from natural habitats revealed the presence of 6 different previously unknown phytoplasma strains. This indicates that museum collections of herbivorous insects represent a rich and largely untapped resource for discovery of new plant pathogens, that natural areas worldwide harbor a diverse but largely undiscovered diversity of phytoplasmas and potential insect vectors, and that independent epidemiological cycles occur in such habitats, posing a potential threat of disease spillover into agricultural systems. Larger-scale future investigations will contribute to a better understanding of phytoplasma genetic diversity, insect host range, and insect-borne phytoplasma transmission and provide an early warning for the emergence of new phytoplasma diseases across global agroecosystems.