Eda Kaya

and 3 more

Oleoresins are resin-like viscous materials obtained from plants, oilseed, or spices with functional properties. The extraction process determines their stability, composition, and physicochemical properties. Oleoresins were obtained from ground waxy burgundy whole grain sorghum with and without ball milling by using the following solvents: two types of novel ionic liquids (IL1: 1-n-Hexyl-3-methylimidazoliumchloride, IL2: 1-Ethyl-3-methylimidazoliumchloride), ethanol and dichloromethane. The effects of processing were evaluated for the extraction yield, protein, fat and total phenolic content, fatty acid composition, particle size and zeta potential, and FTIR spectra. The use of ILs and ball mill process significantly (P < 0.05) affected the extraction yield and physicochemical properties. The highest extraction yields increased (31.35% ± 0.58) when ball milling used with IL2 in comparison to the lowest (18.37% ± 0.77) obtained by traditional ethanol extraction. In a similar way, protein concentration and phenolic content were the highest (1.37% ± 0.05 and 0.57% ± 0.01, respectively) with ball milling extraction and IL1. The FTIR spectra indicated higher phospholipids (at 1200 cm-1) and protein-phospholipid bonding (at 1700 cm-1) by ILs, and ball milling as compared to traditional extraction. Overall, wet milling-assisted extraction by using ball mill and ILs can provide control for the composition of the oleoresins important for their functional properties with higher extraction efficiencies as compared to traditional techniques.